| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irred.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | irred.2 | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 3 |  | irred.3 | ⊢ 𝐼  =  ( Irred ‘ 𝑅 ) | 
						
							| 4 |  | irred.4 | ⊢ 𝑁  =  ( 𝐵  ∖  𝑈 ) | 
						
							| 5 |  | irred.5 | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | elfvdm | ⊢ ( 𝑋  ∈  ( Irred ‘ 𝑅 )  →  𝑅  ∈  dom  Irred ) | 
						
							| 7 | 6 3 | eleq2s | ⊢ ( 𝑋  ∈  𝐼  →  𝑅  ∈  dom  Irred ) | 
						
							| 8 | 7 | elexd | ⊢ ( 𝑋  ∈  𝐼  →  𝑅  ∈  V ) | 
						
							| 9 |  | eldifi | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  𝑈 )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 9 4 | eleq2s | ⊢ ( 𝑋  ∈  𝑁  →  𝑋  ∈  𝐵 ) | 
						
							| 11 | 10 1 | eleqtrdi | ⊢ ( 𝑋  ∈  𝑁  →  𝑋  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 12 | 11 | elfvexd | ⊢ ( 𝑋  ∈  𝑁  →  𝑅  ∈  V ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑋  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 )  →  𝑅  ∈  V ) | 
						
							| 14 |  | fvex | ⊢ ( Base ‘ 𝑟 )  ∈  V | 
						
							| 15 |  | difexg | ⊢ ( ( Base ‘ 𝑟 )  ∈  V  →  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) )  ∈  V ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝑟  =  𝑅  →  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) )  ∈  V ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  𝑟  =  𝑅 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 19 1 | eqtr4di | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( Base ‘ 𝑟 )  =  𝐵 ) | 
						
							| 21 | 18 | fveq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( Unit ‘ 𝑟 )  =  ( Unit ‘ 𝑅 ) ) | 
						
							| 22 | 21 2 | eqtr4di | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( Unit ‘ 𝑟 )  =  𝑈 ) | 
						
							| 23 | 20 22 | difeq12d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) )  =  ( 𝐵  ∖  𝑈 ) ) | 
						
							| 24 | 23 4 | eqtr4di | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) )  =  𝑁 ) | 
						
							| 25 | 17 24 | eqtrd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  𝑏  =  𝑁 ) | 
						
							| 26 | 18 | fveq2d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( .r ‘ 𝑟 )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 27 | 26 5 | eqtr4di | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( .r ‘ 𝑟 )  =   ·  ) | 
						
							| 28 | 27 | oveqd | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 29 | 28 | neeq1d | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  ≠  𝑧  ↔  ( 𝑥  ·  𝑦 )  ≠  𝑧 ) ) | 
						
							| 30 | 25 29 | raleqbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( ∀ 𝑦  ∈  𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  ≠  𝑧  ↔  ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 ) ) | 
						
							| 31 | 25 30 | raleqbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  ≠  𝑧  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 ) ) | 
						
							| 32 | 25 31 | rabeqbidv | ⊢ ( ( 𝑟  =  𝑅  ∧  𝑏  =  ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) ) )  →  { 𝑧  ∈  𝑏  ∣  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  ≠  𝑧 }  =  { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 } ) | 
						
							| 33 | 16 32 | csbied | ⊢ ( 𝑟  =  𝑅  →  ⦋ ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) )  /  𝑏 ⦌ { 𝑧  ∈  𝑏  ∣  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  ≠  𝑧 }  =  { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 } ) | 
						
							| 34 |  | df-irred | ⊢ Irred  =  ( 𝑟  ∈  V  ↦  ⦋ ( ( Base ‘ 𝑟 )  ∖  ( Unit ‘ 𝑟 ) )  /  𝑏 ⦌ { 𝑧  ∈  𝑏  ∣  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 )  ≠  𝑧 } ) | 
						
							| 35 |  | fvex | ⊢ ( Base ‘ 𝑅 )  ∈  V | 
						
							| 36 | 1 35 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 37 | 36 | difexi | ⊢ ( 𝐵  ∖  𝑈 )  ∈  V | 
						
							| 38 | 4 37 | eqeltri | ⊢ 𝑁  ∈  V | 
						
							| 39 | 38 | rabex | ⊢ { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 }  ∈  V | 
						
							| 40 | 33 34 39 | fvmpt | ⊢ ( 𝑅  ∈  V  →  ( Irred ‘ 𝑅 )  =  { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 } ) | 
						
							| 41 | 3 40 | eqtrid | ⊢ ( 𝑅  ∈  V  →  𝐼  =  { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 } ) | 
						
							| 42 | 41 | eleq2d | ⊢ ( 𝑅  ∈  V  →  ( 𝑋  ∈  𝐼  ↔  𝑋  ∈  { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 } ) ) | 
						
							| 43 |  | neeq2 | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝑥  ·  𝑦 )  ≠  𝑧  ↔  ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) | 
						
							| 44 | 43 | 2ralbidv | ⊢ ( 𝑧  =  𝑋  →  ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) | 
						
							| 45 | 44 | elrab | ⊢ ( 𝑋  ∈  { 𝑧  ∈  𝑁  ∣  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑧 }  ↔  ( 𝑋  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) | 
						
							| 46 | 42 45 | bitrdi | ⊢ ( 𝑅  ∈  V  →  ( 𝑋  ∈  𝐼  ↔  ( 𝑋  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) ) | 
						
							| 47 | 8 13 46 | pm5.21nii | ⊢ ( 𝑋  ∈  𝐼  ↔  ( 𝑋  ∈  𝑁  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥  ·  𝑦 )  ≠  𝑋 ) ) |