Step |
Hyp |
Ref |
Expression |
1 |
|
isismt.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
isismt.p |
⊢ 𝑃 = ( Base ‘ 𝐻 ) |
3 |
|
isismt.d |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
4 |
|
isismt.m |
⊢ − = ( dist ‘ 𝐻 ) |
5 |
|
elex |
⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) |
6 |
|
elex |
⊢ ( 𝐻 ∈ 𝑊 → 𝐻 ∈ V ) |
7 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
9 |
8
|
f1oeq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ↔ 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = ( dist ‘ 𝐺 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = 𝐷 ) |
12 |
11
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) = ( 𝑎 𝐷 𝑏 ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ↔ ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
14 |
8 13
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
15 |
8 14
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
16 |
9 15
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) ↔ ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) ) |
17 |
16
|
abbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ) |
18 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( Base ‘ ℎ ) = ( Base ‘ 𝐻 ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( ℎ = 𝐻 → ( Base ‘ ℎ ) = 𝑃 ) |
20 |
19
|
f1oeq3d |
⊢ ( ℎ = 𝐻 → ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ↔ 𝑓 : 𝐵 –1-1-onto→ 𝑃 ) ) |
21 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( dist ‘ ℎ ) = ( dist ‘ 𝐻 ) ) |
22 |
21 4
|
eqtr4di |
⊢ ( ℎ = 𝐻 → ( dist ‘ ℎ ) = − ) |
23 |
22
|
oveqd |
⊢ ( ℎ = 𝐻 → ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) ) |
24 |
23
|
eqeq1d |
⊢ ( ℎ = 𝐻 → ( ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ↔ ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
25 |
24
|
2ralbidv |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
26 |
20 25
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ↔ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) ) |
27 |
26
|
abbidv |
⊢ ( ℎ = 𝐻 → { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ) |
28 |
|
df-ismt |
⊢ Ismt = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑔 ) –1-1-onto→ ( Base ‘ ℎ ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑔 ) ∀ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑓 ‘ 𝑎 ) ( dist ‘ ℎ ) ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 ( dist ‘ 𝑔 ) 𝑏 ) ) } ) |
29 |
|
ovex |
⊢ ( 𝑃 ↑m 𝐵 ) ∈ V |
30 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 → 𝑓 : 𝐵 ⟶ 𝑃 ) |
31 |
2
|
fvexi |
⊢ 𝑃 ∈ V |
32 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
33 |
31 32
|
elmap |
⊢ ( 𝑓 ∈ ( 𝑃 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝑃 ) |
34 |
30 33
|
sylibr |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 → 𝑓 ∈ ( 𝑃 ↑m 𝐵 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) → 𝑓 ∈ ( 𝑃 ↑m 𝐵 ) ) |
36 |
35
|
abssi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ⊆ ( 𝑃 ↑m 𝐵 ) |
37 |
29 36
|
ssexi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ∈ V |
38 |
17 27 28 37
|
ovmpo |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 Ismt 𝐻 ) = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ) |
39 |
5 6 38
|
syl2an |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊 ) → ( 𝐺 Ismt 𝐻 ) = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ) |
40 |
39
|
eleq2d |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐺 Ismt 𝐻 ) ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ) ) |
41 |
|
f1of |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → 𝐹 : 𝐵 ⟶ 𝑃 ) |
42 |
|
fex |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝑃 ∧ 𝐵 ∈ V ) → 𝐹 ∈ V ) |
43 |
41 32 42
|
sylancl |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 → 𝐹 ∈ V ) |
44 |
43
|
adantr |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) → 𝐹 ∈ V ) |
45 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝑃 ) ) |
46 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
47 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) |
48 |
46 47
|
oveq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
50 |
49
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
51 |
45 50
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ↔ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) ) |
52 |
44 51
|
elab3 |
⊢ ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) } ↔ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) |
53 |
40 52
|
bitrdi |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐺 Ismt 𝐻 ) ↔ ( 𝐹 : 𝐵 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 𝐷 𝑏 ) ) ) ) |