Step |
Hyp |
Ref |
Expression |
1 |
|
kgentop |
⊢ ( 𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top ) |
2 |
|
kgenidm |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |
3 |
|
eqimss |
⊢ ( ( 𝑘Gen ‘ 𝐽 ) = 𝐽 → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
5 |
1 4
|
jca |
⊢ ( 𝐽 ∈ ran 𝑘Gen → ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
6 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
7 |
|
kgenss |
⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
9 |
6 8
|
eqssd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) = 𝐽 ) |
10 |
|
kgenf |
⊢ 𝑘Gen : Top ⟶ Top |
11 |
|
ffn |
⊢ ( 𝑘Gen : Top ⟶ Top → 𝑘Gen Fn Top ) |
12 |
10 11
|
ax-mp |
⊢ 𝑘Gen Fn Top |
13 |
|
fnfvelrn |
⊢ ( ( 𝑘Gen Fn Top ∧ 𝐽 ∈ Top ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
14 |
12 13
|
mpan |
⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
15 |
14
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → ( 𝑘Gen ‘ 𝐽 ) ∈ ran 𝑘Gen ) |
16 |
9 15
|
eqeltrrd |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) → 𝐽 ∈ ran 𝑘Gen ) |
17 |
5 16
|
impbii |
⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |