Step |
Hyp |
Ref |
Expression |
1 |
|
islat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
islat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
islat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
fveq2 |
⊢ ( 𝑙 = 𝐾 → ( join ‘ 𝑙 ) = ( join ‘ 𝐾 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑙 = 𝐾 → ( join ‘ 𝑙 ) = ∨ ) |
6 |
5
|
dmeqd |
⊢ ( 𝑙 = 𝐾 → dom ( join ‘ 𝑙 ) = dom ∨ ) |
7 |
|
fveq2 |
⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = ( Base ‘ 𝐾 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = 𝐵 ) |
9 |
8
|
sqxpeqd |
⊢ ( 𝑙 = 𝐾 → ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) = ( 𝐵 × 𝐵 ) ) |
10 |
6 9
|
eqeq12d |
⊢ ( 𝑙 = 𝐾 → ( dom ( join ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ↔ dom ∨ = ( 𝐵 × 𝐵 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑙 = 𝐾 → ( meet ‘ 𝑙 ) = ( meet ‘ 𝐾 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( 𝑙 = 𝐾 → ( meet ‘ 𝑙 ) = ∧ ) |
13 |
12
|
dmeqd |
⊢ ( 𝑙 = 𝐾 → dom ( meet ‘ 𝑙 ) = dom ∧ ) |
14 |
13 9
|
eqeq12d |
⊢ ( 𝑙 = 𝐾 → ( dom ( meet ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ↔ dom ∧ = ( 𝐵 × 𝐵 ) ) ) |
15 |
10 14
|
anbi12d |
⊢ ( 𝑙 = 𝐾 → ( ( dom ( join ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ∧ dom ( meet ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ) ↔ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
16 |
|
df-lat |
⊢ Lat = { 𝑙 ∈ Poset ∣ ( dom ( join ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ∧ dom ( meet ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ) } |
17 |
15 16
|
elrab2 |
⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |