Metamath Proof Explorer


Theorem islaut

Description: The predicate "is a lattice automorphism". (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lautset.b 𝐵 = ( Base ‘ 𝐾 )
lautset.l = ( le ‘ 𝐾 )
lautset.i 𝐼 = ( LAut ‘ 𝐾 )
Assertion islaut ( 𝐾𝐴 → ( 𝐹𝐼 ↔ ( 𝐹 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lautset.b 𝐵 = ( Base ‘ 𝐾 )
2 lautset.l = ( le ‘ 𝐾 )
3 lautset.i 𝐼 = ( LAut ‘ 𝐾 )
4 1 2 3 lautset ( 𝐾𝐴𝐼 = { 𝑓 ∣ ( 𝑓 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) } )
5 4 eleq2d ( 𝐾𝐴 → ( 𝐹𝐼𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) } ) )
6 f1of ( 𝐹 : 𝐵1-1-onto𝐵𝐹 : 𝐵𝐵 )
7 1 fvexi 𝐵 ∈ V
8 fex ( ( 𝐹 : 𝐵𝐵𝐵 ∈ V ) → 𝐹 ∈ V )
9 6 7 8 sylancl ( 𝐹 : 𝐵1-1-onto𝐵𝐹 ∈ V )
10 9 adantr ( ( 𝐹 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) → 𝐹 ∈ V )
11 f1oeq1 ( 𝑓 = 𝐹 → ( 𝑓 : 𝐵1-1-onto𝐵𝐹 : 𝐵1-1-onto𝐵 ) )
12 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
13 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑦 ) = ( 𝐹𝑦 ) )
14 12 13 breq12d ( 𝑓 = 𝐹 → ( ( 𝑓𝑥 ) ( 𝑓𝑦 ) ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
15 14 bibi2d ( 𝑓 = 𝐹 → ( ( 𝑥 𝑦 ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ↔ ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) )
16 15 2ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) )
17 11 16 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) ↔ ( 𝐹 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) ) )
18 10 17 elab3 ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑓𝑥 ) ( 𝑓𝑦 ) ) ) } ↔ ( 𝐹 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) )
19 5 18 bitrdi ( 𝐾𝐴 → ( 𝐹𝐼 ↔ ( 𝐹 : 𝐵1-1-onto𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) ) )