Step |
Hyp |
Ref |
Expression |
1 |
|
lautset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lautset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
lautset.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
4 |
1 2 3
|
lautset |
⊢ ( 𝐾 ∈ 𝐴 → 𝐼 = { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
5 |
4
|
eleq2d |
⊢ ( 𝐾 ∈ 𝐴 → ( 𝐹 ∈ 𝐼 ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
6 |
|
f1of |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → 𝐹 : 𝐵 ⟶ 𝐵 ) |
7 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
8 |
|
fex |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐵 ∧ 𝐵 ∈ V ) → 𝐹 ∈ V ) |
9 |
6 7 8
|
sylancl |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 → 𝐹 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 ∈ V ) |
11 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) ) |
12 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
14 |
12 13
|
breq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
15 |
14
|
bibi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
16 |
15
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
17 |
11 16
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
18 |
10 17
|
elab3 |
⊢ ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
19 |
5 18
|
bitrdi |
⊢ ( 𝐾 ∈ 𝐴 → ( 𝐹 ∈ 𝐼 ↔ ( 𝐹 : 𝐵 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |