Step |
Hyp |
Ref |
Expression |
1 |
|
islbs2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
islbs2.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
3 |
|
islbs2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
1 2
|
lbsss |
⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → 𝐵 ⊆ 𝑉 ) |
6 |
1 2 3
|
lbssp |
⊢ ( 𝐵 ∈ 𝐽 → ( 𝑁 ‘ 𝐵 ) = 𝑉 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → ( 𝑁 ‘ 𝐵 ) = 𝑉 ) |
8 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
10 |
9
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
11 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
11 12
|
drngunz |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ DivRing → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
14 |
10 13
|
syl |
⊢ ( 𝑊 ∈ LVec → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
15 |
8 14
|
jca |
⊢ ( 𝑊 ∈ LVec → ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
16 |
2 3 9 12 11
|
lbsind2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝐵 ∈ 𝐽 ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
17 |
15 16
|
syl3an1 |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
18 |
17
|
3expa |
⊢ ( ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
19 |
18
|
ralrimiva |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
20 |
5 7 19
|
3jca |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ) → ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
21 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → 𝐵 ⊆ 𝑉 ) |
22 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → ( 𝑁 ‘ 𝐵 ) = 𝑉 ) |
23 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
24 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
25 |
24
|
difeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑦 } ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
27 |
23 26
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
28 |
27
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
29 |
|
simplr3 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
30 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑦 ∈ 𝐵 ) |
31 |
28 29 30
|
rspcdva |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
32 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑊 ∈ LVec ) |
33 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
34 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ↔ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
35 |
33 34
|
sylib |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
36 |
21
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝐵 ⊆ 𝑉 ) |
37 |
36 30
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑦 ∈ 𝑉 ) |
38 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
39 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
40 |
1 9 38 39 11 3
|
lspsnvs |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑧 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) = ( 𝑁 ‘ { 𝑦 } ) ) |
41 |
32 35 37 40
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) = ( 𝑁 ‘ { 𝑦 } ) ) |
42 |
41
|
sseq1d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ ( 𝑁 ‘ { 𝑦 } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
43 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
44 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → 𝑊 ∈ LMod ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑊 ∈ LMod ) |
46 |
36
|
ssdifssd |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝐵 ∖ { 𝑦 } ) ⊆ 𝑉 ) |
47 |
1 43 3
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐵 ∖ { 𝑦 } ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
48 |
45 46 47
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
49 |
35
|
simpld |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
50 |
1 9 38 39
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
51 |
45 49 37 50
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑉 ) |
52 |
1 43 3 45 48 51
|
lspsnel5 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ ( 𝑁 ‘ { ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
53 |
1 43 3 45 48 37
|
lspsnel5 |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ ( 𝑁 ‘ { 𝑦 } ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
54 |
42 52 53
|
3bitr4d |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ↔ 𝑦 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
55 |
31 54
|
mtbird |
⊢ ( ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) ) → ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
56 |
55
|
ralrimivva |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) |
57 |
1 9 38 39 2 3 11
|
islbs |
⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ¬ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑦 } ) ) ) ) ) |
59 |
21 22 56 58
|
mpbir3and |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) → 𝐵 ∈ 𝐽 ) |
60 |
20 59
|
impbida |
⊢ ( 𝑊 ∈ LVec → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |