Step |
Hyp |
Ref |
Expression |
1 |
|
islbs5.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
islbs5.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
3 |
|
islbs5.r |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
4 |
|
islbs5.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
islbs5.z |
⊢ 𝑂 = ( 0g ‘ 𝑊 ) |
6 |
|
islbs5.y |
⊢ 0 = ( 0g ‘ 𝑆 ) |
7 |
|
islbs5.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
8 |
|
islbs5.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
9 |
|
islbs5.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
10 |
|
islbs5.s |
⊢ ( 𝜑 → 𝑆 ∈ NzRing ) |
11 |
|
islbs5.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
12 |
|
islbs5.f |
⊢ ( 𝜑 → 𝐹 : 𝐼 –1-1→ 𝐵 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
14 |
1 13 3 4 5 6 8 9 10 11 12
|
lindflbs |
⊢ ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) ) |
15 |
|
f1f |
⊢ ( 𝐹 : 𝐼 –1-1→ 𝐵 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
16 |
12 15
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) |
18 |
1 3 4 5 6 17
|
islindf4 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑉 ∧ 𝐹 : 𝐼 ⟶ 𝐵 ) → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) |
19 |
9 11 16 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) |
20 |
10
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
21 |
|
eqid |
⊢ ( 𝑆 freeLMod 𝐼 ) = ( 𝑆 freeLMod 𝐼 ) |
22 |
21 2 6 17
|
frlmelbas |
⊢ ( ( 𝑆 ∈ V ∧ 𝐼 ∈ 𝑉 ) → ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑎 finSupp 0 ) ) ) |
23 |
20 11 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑎 finSupp 0 ) ) ) |
24 |
23
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑎 finSupp 0 ) → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ) |
25 |
|
impexp |
⊢ ( ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑎 finSupp 0 ) → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ) |
26 |
|
impexp |
⊢ ( ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ↔ ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ↔ ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ) |
28 |
27
|
bicomd |
⊢ ( 𝜑 → ( ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ) |
30 |
25 29
|
bitrid |
⊢ ( 𝜑 → ( ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑎 finSupp 0 ) → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ) |
31 |
24 30
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) → ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) ) |
32 |
31
|
ralbidv2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ( ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 → 𝑎 = ( 𝐼 × { 0 } ) ) ↔ ∀ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) |
33 |
19 32
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) |
34 |
33
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ↔ ( ∀ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) ) |
35 |
14 34
|
bitrd |
⊢ ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( ∀ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎 ∘f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) ) |