Metamath Proof Explorer


Theorem islbs5

Description: An equivalent formulation of the basis predicate in a vector space, using a function F for generating the base. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses islbs5.b 𝐵 = ( Base ‘ 𝑊 )
islbs5.k 𝐾 = ( Base ‘ 𝑆 )
islbs5.r 𝑆 = ( Scalar ‘ 𝑊 )
islbs5.t · = ( ·𝑠𝑊 )
islbs5.z 𝑂 = ( 0g𝑊 )
islbs5.y 0 = ( 0g𝑆 )
islbs5.j 𝐽 = ( LBasis ‘ 𝑊 )
islbs5.n 𝑁 = ( LSpan ‘ 𝑊 )
islbs5.w ( 𝜑𝑊 ∈ LMod )
islbs5.s ( 𝜑𝑆 ∈ NzRing )
islbs5.i ( 𝜑𝐼𝑉 )
islbs5.f ( 𝜑𝐹 : 𝐼1-1𝐵 )
Assertion islbs5 ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( ∀ 𝑎 ∈ ( 𝐾m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 islbs5.b 𝐵 = ( Base ‘ 𝑊 )
2 islbs5.k 𝐾 = ( Base ‘ 𝑆 )
3 islbs5.r 𝑆 = ( Scalar ‘ 𝑊 )
4 islbs5.t · = ( ·𝑠𝑊 )
5 islbs5.z 𝑂 = ( 0g𝑊 )
6 islbs5.y 0 = ( 0g𝑆 )
7 islbs5.j 𝐽 = ( LBasis ‘ 𝑊 )
8 islbs5.n 𝑁 = ( LSpan ‘ 𝑊 )
9 islbs5.w ( 𝜑𝑊 ∈ LMod )
10 islbs5.s ( 𝜑𝑆 ∈ NzRing )
11 islbs5.i ( 𝜑𝐼𝑉 )
12 islbs5.f ( 𝜑𝐹 : 𝐼1-1𝐵 )
13 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
14 1 13 3 4 5 6 8 9 10 11 12 lindflbs ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )
15 f1f ( 𝐹 : 𝐼1-1𝐵𝐹 : 𝐼𝐵 )
16 12 15 syl ( 𝜑𝐹 : 𝐼𝐵 )
17 eqid ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) = ( Base ‘ ( 𝑆 freeLMod 𝐼 ) )
18 1 3 4 5 6 17 islindf4 ( ( 𝑊 ∈ LMod ∧ 𝐼𝑉𝐹 : 𝐼𝐵 ) → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) )
19 9 11 16 18 syl3anc ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) )
20 10 elexd ( 𝜑𝑆 ∈ V )
21 eqid ( 𝑆 freeLMod 𝐼 ) = ( 𝑆 freeLMod 𝐼 )
22 21 2 6 17 frlmelbas ( ( 𝑆 ∈ V ∧ 𝐼𝑉 ) → ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ∧ 𝑎 finSupp 0 ) ) )
23 20 11 22 syl2anc ( 𝜑 → ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) ∧ 𝑎 finSupp 0 ) ) )
24 23 imbi1d ( 𝜑 → ( ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( ( 𝑎 ∈ ( 𝐾m 𝐼 ) ∧ 𝑎 finSupp 0 ) → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ) )
25 impexp ( ( ( 𝑎 ∈ ( 𝐾m 𝐼 ) ∧ 𝑎 finSupp 0 ) → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) → ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ) )
26 impexp ( ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ↔ ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) )
27 26 a1i ( 𝜑 → ( ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ↔ ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ) )
28 27 bicomd ( 𝜑 → ( ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) )
29 28 imbi2d ( 𝜑 → ( ( 𝑎 ∈ ( 𝐾m 𝐼 ) → ( 𝑎 finSupp 0 → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) )
30 25 29 bitrid ( 𝜑 → ( ( ( 𝑎 ∈ ( 𝐾m 𝐼 ) ∧ 𝑎 finSupp 0 ) → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) )
31 24 30 bitrd ( 𝜑 → ( ( 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) → ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ) ↔ ( 𝑎 ∈ ( 𝐾m 𝐼 ) → ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) ) )
32 31 ralbidv2 ( 𝜑 → ( ∀ 𝑎 ∈ ( Base ‘ ( 𝑆 freeLMod 𝐼 ) ) ( ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂𝑎 = ( 𝐼 × { 0 } ) ) ↔ ∀ 𝑎 ∈ ( 𝐾m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) )
33 19 32 bitrd ( 𝜑 → ( 𝐹 LIndF 𝑊 ↔ ∀ 𝑎 ∈ ( 𝐾m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ) )
34 33 anbi1d ( 𝜑 → ( ( 𝐹 LIndF 𝑊 ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ↔ ( ∀ 𝑎 ∈ ( 𝐾m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )
35 14 34 bitrd ( 𝜑 → ( ran 𝐹 ∈ ( LBasis ‘ 𝑊 ) ↔ ( ∀ 𝑎 ∈ ( 𝐾m 𝐼 ) ( ( 𝑎 finSupp 0 ∧ ( 𝑊 Σg ( 𝑎f · 𝐹 ) ) = 𝑂 ) → 𝑎 = ( 𝐼 × { 0 } ) ) ∧ ( 𝑁 ‘ ran 𝐹 ) = 𝐵 ) ) )