Metamath Proof Explorer


Theorem isldil

Description: The predicate "is a lattice dilation". Similar to definition of dilation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses ldilset.b 𝐵 = ( Base ‘ 𝐾 )
ldilset.l = ( le ‘ 𝐾 )
ldilset.h 𝐻 = ( LHyp ‘ 𝐾 )
ldilset.i 𝐼 = ( LAut ‘ 𝐾 )
ldilset.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
Assertion isldil ( ( 𝐾𝐶𝑊𝐻 ) → ( 𝐹𝐷 ↔ ( 𝐹𝐼 ∧ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 ldilset.b 𝐵 = ( Base ‘ 𝐾 )
2 ldilset.l = ( le ‘ 𝐾 )
3 ldilset.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ldilset.i 𝐼 = ( LAut ‘ 𝐾 )
5 ldilset.d 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 )
6 1 2 3 4 5 ldilset ( ( 𝐾𝐶𝑊𝐻 ) → 𝐷 = { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } )
7 6 eleq2d ( ( 𝐾𝐶𝑊𝐻 ) → ( 𝐹𝐷𝐹 ∈ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } ) )
8 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
9 8 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝑥 ) = 𝑥 ↔ ( 𝐹𝑥 ) = 𝑥 ) )
10 9 imbi2d ( 𝑓 = 𝐹 → ( ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) ↔ ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) )
11 10 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) ↔ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) )
12 11 elrab ( 𝐹 ∈ { 𝑓𝐼 ∣ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝑓𝑥 ) = 𝑥 ) } ↔ ( 𝐹𝐼 ∧ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) )
13 7 12 bitrdi ( ( 𝐾𝐶𝑊𝐻 ) → ( 𝐹𝐷 ↔ ( 𝐹𝐼 ∧ ∀ 𝑥𝐵 ( 𝑥 𝑊 → ( 𝐹𝑥 ) = 𝑥 ) ) ) )