Step |
Hyp |
Ref |
Expression |
1 |
|
ldilset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ldilset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
ldilset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
ldilset.i |
⊢ 𝐼 = ( LAut ‘ 𝐾 ) |
5 |
|
ldilset.d |
⊢ 𝐷 = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
ldilset |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻 ) → 𝐷 = { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝐷 ↔ 𝐹 ∈ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
8 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) = 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
12 |
11
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ 𝐼 ∣ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ↔ ( 𝐹 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
13 |
7 12
|
bitrdi |
⊢ ( ( 𝐾 ∈ 𝐶 ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≤ 𝑊 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) ) |