Metamath Proof Explorer


Theorem islhp

Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lhpset.b 𝐵 = ( Base ‘ 𝐾 )
lhpset.u 1 = ( 1. ‘ 𝐾 )
lhpset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lhpset.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion islhp ( 𝐾𝐴 → ( 𝑊𝐻 ↔ ( 𝑊𝐵𝑊 𝐶 1 ) ) )

Proof

Step Hyp Ref Expression
1 lhpset.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpset.u 1 = ( 1. ‘ 𝐾 )
3 lhpset.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 lhpset.h 𝐻 = ( LHyp ‘ 𝐾 )
5 1 2 3 4 lhpset ( 𝐾𝐴𝐻 = { 𝑤𝐵𝑤 𝐶 1 } )
6 5 eleq2d ( 𝐾𝐴 → ( 𝑊𝐻𝑊 ∈ { 𝑤𝐵𝑤 𝐶 1 } ) )
7 breq1 ( 𝑤 = 𝑊 → ( 𝑤 𝐶 1𝑊 𝐶 1 ) )
8 7 elrab ( 𝑊 ∈ { 𝑤𝐵𝑤 𝐶 1 } ↔ ( 𝑊𝐵𝑊 𝐶 1 ) )
9 6 8 bitrdi ( 𝐾𝐴 → ( 𝑊𝐻 ↔ ( 𝑊𝐵𝑊 𝐶 1 ) ) )