Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 11-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhpset.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lhpset.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| lhpset.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| lhpset.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| Assertion | islhp | ⊢ ( 𝐾 ∈ 𝐴 → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ 𝐵 ∧ 𝑊 𝐶 1 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lhpset.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lhpset.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 3 | lhpset.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | lhpset.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | lhpset | ⊢ ( 𝐾 ∈ 𝐴 → 𝐻 = { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ) | 
| 6 | 5 | eleq2d | ⊢ ( 𝐾 ∈ 𝐴 → ( 𝑊 ∈ 𝐻 ↔ 𝑊 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ) ) | 
| 7 | breq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 𝐶 1 ↔ 𝑊 𝐶 1 ) ) | |
| 8 | 7 | elrab | ⊢ ( 𝑊 ∈ { 𝑤 ∈ 𝐵 ∣ 𝑤 𝐶 1 } ↔ ( 𝑊 ∈ 𝐵 ∧ 𝑊 𝐶 1 ) ) | 
| 9 | 6 8 | bitrdi | ⊢ ( 𝐾 ∈ 𝐴 → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ 𝐵 ∧ 𝑊 𝐶 1 ) ) ) |