Metamath Proof Explorer


Theorem islhp2

Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpset.b 𝐵 = ( Base ‘ 𝐾 )
lhpset.u 1 = ( 1. ‘ 𝐾 )
lhpset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lhpset.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion islhp2 ( ( 𝐾𝐴𝑊𝐵 ) → ( 𝑊𝐻𝑊 𝐶 1 ) )

Proof

Step Hyp Ref Expression
1 lhpset.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpset.u 1 = ( 1. ‘ 𝐾 )
3 lhpset.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 lhpset.h 𝐻 = ( LHyp ‘ 𝐾 )
5 1 2 3 4 islhp ( 𝐾𝐴 → ( 𝑊𝐻 ↔ ( 𝑊𝐵𝑊 𝐶 1 ) ) )
6 5 baibd ( ( 𝐾𝐴𝑊𝐵 ) → ( 𝑊𝐻𝑊 𝐶 1 ) )