Metamath Proof Explorer
Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012)
|
|
Ref |
Expression |
|
Hypotheses |
lhpset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
lhpset.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
|
|
lhpset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
|
|
lhpset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
|
Assertion |
islhp2 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ 𝑊 𝐶 1 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lhpset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lhpset.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
3 |
|
lhpset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
4 |
|
lhpset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
1 2 3 4
|
islhp |
⊢ ( 𝐾 ∈ 𝐴 → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ 𝐵 ∧ 𝑊 𝐶 1 ) ) ) |
6 |
5
|
baibd |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑊 ∈ 𝐻 ↔ 𝑊 𝐶 1 ) ) |