Step |
Hyp |
Ref |
Expression |
1 |
|
isline.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
isline.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
isline.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
isline.n |
⊢ 𝑁 = ( Lines ‘ 𝐾 ) |
5 |
1 2 3 4
|
lineset |
⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) |
6 |
5
|
eleq2d |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ) ) |
7 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
8 |
7
|
rabex |
⊢ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V |
9 |
|
eleq1 |
⊢ ( 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } → ( 𝑋 ∈ V ↔ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } → 𝑋 ∈ V ) |
11 |
10
|
adantl |
⊢ ( ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑋 ∈ V ) |
12 |
11
|
a1i |
⊢ ( ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑋 ∈ V ) ) |
13 |
12
|
rexlimivv |
⊢ ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) → 𝑋 ∈ V ) |
14 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ↔ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
16 |
15
|
2rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
17 |
13 16
|
elab3 |
⊢ ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑥 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) } ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
18 |
6 17
|
bitrdi |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( 𝑞 ≠ 𝑟 ∧ 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |