Step |
Hyp |
Ref |
Expression |
1 |
|
isline2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
isline2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
isline2.n |
⊢ 𝑁 = ( Lines ‘ 𝐾 ) |
4 |
|
isline2.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
5 1 2 3
|
isline |
⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 2
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
10 |
9
|
ad2antrl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
11 |
8 2
|
atbase |
⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
ad2antll |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
13 |
8 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑝 ∨ 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
7 10 12 13
|
syl3anc |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑝 ∨ 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
8 5 2 4
|
pmapval |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∨ 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) |
16 |
14 15
|
syldan |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) |
17 |
16
|
eqeq2d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ↔ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) |
18 |
17
|
anbi2d |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ( 𝑝 ≠ 𝑞 ∧ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) ) |
19 |
18
|
2rexbidva |
⊢ ( 𝐾 ∈ Lat → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ∨ 𝑞 ) } ) ) ) |
20 |
6 19
|
bitr4d |
⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |