Step |
Hyp |
Ref |
Expression |
1 |
|
isline3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
isline3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
isline3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
isline3.n |
⊢ 𝑁 = ( Lines ‘ 𝐾 ) |
5 |
|
isline3.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
6 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
8 |
2 3 4 5
|
isline2 |
⊢ ( 𝐾 ∈ Lat → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ) ) |
10 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
11 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
6
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
13 |
1 3
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
14 |
13
|
ad2antrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑝 ∈ 𝐵 ) |
15 |
1 3
|
atbase |
⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵 ) |
16 |
15
|
ad2antll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → 𝑞 ∈ 𝐵 ) |
17 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑝 ∨ 𝑞 ) ∈ 𝐵 ) |
18 |
12 14 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( 𝑝 ∨ 𝑞 ) ∈ 𝐵 ) |
19 |
1 5
|
pmap11 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑝 ∨ 𝑞 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ↔ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) |
20 |
10 11 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ↔ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) |
21 |
20
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |
22 |
21
|
2rexbidva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ ( 𝑝 ∨ 𝑞 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |
23 |
9 22
|
bitrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( 𝑝 ∨ 𝑞 ) ) ) ) |