Metamath Proof Explorer


Theorem isline3

Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012)

Ref Expression
Hypotheses isline3.b 𝐵 = ( Base ‘ 𝐾 )
isline3.j = ( join ‘ 𝐾 )
isline3.a 𝐴 = ( Atoms ‘ 𝐾 )
isline3.n 𝑁 = ( Lines ‘ 𝐾 )
isline3.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion isline3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) )

Proof

Step Hyp Ref Expression
1 isline3.b 𝐵 = ( Base ‘ 𝐾 )
2 isline3.j = ( join ‘ 𝐾 )
3 isline3.a 𝐴 = ( Atoms ‘ 𝐾 )
4 isline3.n 𝑁 = ( Lines ‘ 𝐾 )
5 isline3.m 𝑀 = ( pmap ‘ 𝐾 )
6 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
7 6 adantr ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → 𝐾 ∈ Lat )
8 2 3 4 5 isline2 ( 𝐾 ∈ Lat → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞 ∧ ( 𝑀𝑋 ) = ( 𝑀 ‘ ( 𝑝 𝑞 ) ) ) ) )
9 7 8 syl ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞 ∧ ( 𝑀𝑋 ) = ( 𝑀 ‘ ( 𝑝 𝑞 ) ) ) ) )
10 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → 𝐾 ∈ HL )
11 simplr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → 𝑋𝐵 )
12 6 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → 𝐾 ∈ Lat )
13 1 3 atbase ( 𝑝𝐴𝑝𝐵 )
14 13 ad2antrl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → 𝑝𝐵 )
15 1 3 atbase ( 𝑞𝐴𝑞𝐵 )
16 15 ad2antll ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → 𝑞𝐵 )
17 1 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑝𝐵𝑞𝐵 ) → ( 𝑝 𝑞 ) ∈ 𝐵 )
18 12 14 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → ( 𝑝 𝑞 ) ∈ 𝐵 )
19 1 5 pmap11 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ∧ ( 𝑝 𝑞 ) ∈ 𝐵 ) → ( ( 𝑀𝑋 ) = ( 𝑀 ‘ ( 𝑝 𝑞 ) ) ↔ 𝑋 = ( 𝑝 𝑞 ) ) )
20 10 11 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → ( ( 𝑀𝑋 ) = ( 𝑀 ‘ ( 𝑝 𝑞 ) ) ↔ 𝑋 = ( 𝑝 𝑞 ) ) )
21 20 anbi2d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → ( ( 𝑝𝑞 ∧ ( 𝑀𝑋 ) = ( 𝑀 ‘ ( 𝑝 𝑞 ) ) ) ↔ ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) )
22 21 2rexbidva ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞 ∧ ( 𝑀𝑋 ) = ( 𝑀 ‘ ( 𝑝 𝑞 ) ) ) ↔ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) )
23 9 22 bitrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑀𝑋 ) ∈ 𝑁 ↔ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) )