Metamath Proof Explorer


Theorem islln

Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses llnset.b 𝐵 = ( Base ‘ 𝐾 )
llnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
llnset.a 𝐴 = ( Atoms ‘ 𝐾 )
llnset.n 𝑁 = ( LLines ‘ 𝐾 )
Assertion islln ( 𝐾𝐷 → ( 𝑋𝑁 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴 𝑝 𝐶 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 llnset.b 𝐵 = ( Base ‘ 𝐾 )
2 llnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 llnset.a 𝐴 = ( Atoms ‘ 𝐾 )
4 llnset.n 𝑁 = ( LLines ‘ 𝐾 )
5 1 2 3 4 llnset ( 𝐾𝐷𝑁 = { 𝑥𝐵 ∣ ∃ 𝑝𝐴 𝑝 𝐶 𝑥 } )
6 5 eleq2d ( 𝐾𝐷 → ( 𝑋𝑁𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑝𝐴 𝑝 𝐶 𝑥 } ) )
7 breq2 ( 𝑥 = 𝑋 → ( 𝑝 𝐶 𝑥𝑝 𝐶 𝑋 ) )
8 7 rexbidv ( 𝑥 = 𝑋 → ( ∃ 𝑝𝐴 𝑝 𝐶 𝑥 ↔ ∃ 𝑝𝐴 𝑝 𝐶 𝑋 ) )
9 8 elrab ( 𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑝𝐴 𝑝 𝐶 𝑥 } ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴 𝑝 𝐶 𝑋 ) )
10 6 9 bitrdi ( 𝐾𝐷 → ( 𝑋𝑁 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴 𝑝 𝐶 𝑋 ) ) )