Step |
Hyp |
Ref |
Expression |
1 |
|
llnset.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
llnset.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
3 |
|
llnset.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
llnset.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
5 |
1 2 3 4
|
llnset |
⊢ ( 𝐾 ∈ 𝐷 → 𝑁 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) |
6 |
5
|
eleq2d |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ) ) |
7 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑝 𝐶 𝑥 ↔ 𝑝 𝐶 𝑋 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 ↔ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |
9 |
8
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑥 } ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) |
10 |
6 9
|
bitrdi |
⊢ ( 𝐾 ∈ 𝐷 → ( 𝑋 ∈ 𝑁 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑝 ∈ 𝐴 𝑝 𝐶 𝑋 ) ) ) |