Metamath Proof Explorer


Theorem islln2

Description: The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses islln3.b 𝐵 = ( Base ‘ 𝐾 )
islln3.j = ( join ‘ 𝐾 )
islln3.a 𝐴 = ( Atoms ‘ 𝐾 )
islln3.n 𝑁 = ( LLines ‘ 𝐾 )
Assertion islln2 ( 𝐾 ∈ HL → ( 𝑋𝑁 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 islln3.b 𝐵 = ( Base ‘ 𝐾 )
2 islln3.j = ( join ‘ 𝐾 )
3 islln3.a 𝐴 = ( Atoms ‘ 𝐾 )
4 islln3.n 𝑁 = ( LLines ‘ 𝐾 )
5 1 4 llnbase ( 𝑋𝑁𝑋𝐵 )
6 5 pm4.71ri ( 𝑋𝑁 ↔ ( 𝑋𝐵𝑋𝑁 ) )
7 1 2 3 4 islln3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝑁 ↔ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) )
8 7 pm5.32da ( 𝐾 ∈ HL → ( ( 𝑋𝐵𝑋𝑁 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) ) )
9 6 8 syl5bb ( 𝐾 ∈ HL → ( 𝑋𝑁 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴 ( 𝑝𝑞𝑋 = ( 𝑝 𝑞 ) ) ) ) )