Step |
Hyp |
Ref |
Expression |
1 |
|
islln2a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
islln2a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
islln2a.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
4 |
|
oveq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) |
5 |
1 2
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
7 |
4 6
|
sylan9eqr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) |
8 |
2 3
|
llnneat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝑁 ) → ¬ 𝑄 ∈ 𝐴 ) |
9 |
8
|
adantlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑄 ∈ 𝑁 ) → ¬ 𝑄 ∈ 𝐴 ) |
10 |
9
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑄 ∈ 𝑁 → ¬ 𝑄 ∈ 𝐴 ) ) |
11 |
10
|
con2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑄 ∈ 𝐴 → ¬ 𝑄 ∈ 𝑁 ) ) |
12 |
11
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ¬ 𝑄 ∈ 𝑁 ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑄 ∈ 𝑁 ) |
14 |
7 13
|
eqneltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 = 𝑄 ) → ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝑁 ) |
15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 = 𝑄 → ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝑁 ) ) |
16 |
15
|
necon2ad |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ∨ 𝑄 ) ∈ 𝑁 → 𝑃 ≠ 𝑄 ) ) |
17 |
1 2 3
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝑁 ) |
18 |
17
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 → ( 𝑃 ∨ 𝑄 ) ∈ 𝑁 ) ) |
19 |
16 18
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ∨ 𝑄 ) ∈ 𝑁 ↔ 𝑃 ≠ 𝑄 ) ) |