Metamath Proof Explorer


Theorem islln2a

Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses islln2a.j = ( join ‘ 𝐾 )
islln2a.a 𝐴 = ( Atoms ‘ 𝐾 )
islln2a.n 𝑁 = ( LLines ‘ 𝐾 )
Assertion islln2a ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( ( 𝑃 𝑄 ) ∈ 𝑁𝑃𝑄 ) )

Proof

Step Hyp Ref Expression
1 islln2a.j = ( join ‘ 𝐾 )
2 islln2a.a 𝐴 = ( Atoms ‘ 𝐾 )
3 islln2a.n 𝑁 = ( LLines ‘ 𝐾 )
4 oveq1 ( 𝑃 = 𝑄 → ( 𝑃 𝑄 ) = ( 𝑄 𝑄 ) )
5 1 2 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑄𝐴 ) → ( 𝑄 𝑄 ) = 𝑄 )
6 5 3adant2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑄 𝑄 ) = 𝑄 )
7 4 6 sylan9eqr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 𝑄 ) = 𝑄 )
8 2 3 llnneat ( ( 𝐾 ∈ HL ∧ 𝑄𝑁 ) → ¬ 𝑄𝐴 )
9 8 adantlr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) ∧ 𝑄𝑁 ) → ¬ 𝑄𝐴 )
10 9 ex ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑄𝑁 → ¬ 𝑄𝐴 ) )
11 10 con2d ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ) → ( 𝑄𝐴 → ¬ 𝑄𝑁 ) )
12 11 3impia ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ¬ 𝑄𝑁 )
13 12 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃 = 𝑄 ) → ¬ 𝑄𝑁 )
14 7 13 eqneltrd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃 = 𝑄 ) → ¬ ( 𝑃 𝑄 ) ∈ 𝑁 )
15 14 ex ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 = 𝑄 → ¬ ( 𝑃 𝑄 ) ∈ 𝑁 ) )
16 15 necon2ad ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( ( 𝑃 𝑄 ) ∈ 𝑁𝑃𝑄 ) )
17 1 2 3 llni2 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃 𝑄 ) ∈ 𝑁 )
18 17 ex ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃𝑄 → ( 𝑃 𝑄 ) ∈ 𝑁 ) )
19 16 18 impbid ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( ( 𝑃 𝑄 ) ∈ 𝑁𝑃𝑄 ) )