Metamath Proof Explorer
		
		
		
		Description:  The predicate "is a lattice line".  (Contributed by NM, 16-Jun-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | llnset.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | llnset.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
					
						|  |  | llnset.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
					
						|  |  | llnset.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
				
					|  | Assertion | islln4 | ⊢  ( ( 𝐾  ∈  𝐷  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  𝑁  ↔  ∃ 𝑝  ∈  𝐴 𝑝 𝐶 𝑋 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llnset.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | llnset.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 3 |  | llnset.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | llnset.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
						
							| 5 | 1 2 3 4 | islln | ⊢ ( 𝐾  ∈  𝐷  →  ( 𝑋  ∈  𝑁  ↔  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑝  ∈  𝐴 𝑝 𝐶 𝑋 ) ) ) | 
						
							| 6 | 5 | baibd | ⊢ ( ( 𝐾  ∈  𝐷  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  𝑁  ↔  ∃ 𝑝  ∈  𝐴 𝑝 𝐶 𝑋 ) ) |