Step |
Hyp |
Ref |
Expression |
1 |
|
ineq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∩ 𝒫 𝑥 ) = ( 𝐽 ∩ 𝒫 𝑥 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ↾t 𝑢 ) = ( 𝐽 ↾t 𝑢 ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ↔ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
5 |
1 4
|
rexeqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
7 |
6
|
raleqbi1dv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |
8 |
|
df-lly |
⊢ Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) } |
9 |
7 8
|
elrab2 |
⊢ ( 𝐽 ∈ Locally 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝐽 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝐽 ↾t 𝑢 ) ∈ 𝐴 ) ) ) |