Step |
Hyp |
Ref |
Expression |
1 |
|
islmhm.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
2 |
|
islmhm.l |
⊢ 𝐿 = ( Scalar ‘ 𝑇 ) |
3 |
|
islmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
4 |
|
islmhm.e |
⊢ 𝐸 = ( Base ‘ 𝑆 ) |
5 |
|
islmhm.m |
⊢ · = ( ·𝑠 ‘ 𝑆 ) |
6 |
|
islmhm.n |
⊢ × = ( ·𝑠 ‘ 𝑇 ) |
7 |
|
df-lmhm |
⊢ LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
8 |
7
|
elmpocl |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ) |
9 |
|
oveq12 |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 GrpHom 𝑡 ) = ( 𝑆 GrpHom 𝑇 ) ) |
10 |
|
fvexd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Scalar ‘ 𝑠 ) ∈ V ) |
11 |
|
simplr |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑡 = 𝑇 ) |
12 |
11
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Scalar ‘ 𝑡 ) = ( Scalar ‘ 𝑇 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Scalar ‘ 𝑡 ) = 𝐿 ) |
14 |
|
simpr |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑤 = ( Scalar ‘ 𝑠 ) ) |
15 |
|
simpll |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑠 = 𝑆 ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Scalar ‘ 𝑠 ) = ( Scalar ‘ 𝑆 ) ) |
17 |
14 16
|
eqtrd |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑤 = ( Scalar ‘ 𝑆 ) ) |
18 |
17 1
|
eqtr4di |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → 𝑤 = 𝐾 ) |
19 |
13 18
|
eqeq12d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ( Scalar ‘ 𝑡 ) = 𝑤 ↔ 𝐿 = 𝐾 ) ) |
20 |
18
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐾 ) ) |
21 |
20 3
|
eqtr4di |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑤 ) = 𝐵 ) |
22 |
15
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
23 |
22 4
|
eqtr4di |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( Base ‘ 𝑠 ) = 𝐸 ) |
24 |
15
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑠 ) = ( ·𝑠 ‘ 𝑆 ) ) |
25 |
24 5
|
eqtr4di |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑠 ) = · ) |
26 |
25
|
oveqd |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
27 |
26
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) ) |
28 |
11
|
fveq2d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑡 ) = ( ·𝑠 ‘ 𝑇 ) ) |
29 |
28 6
|
eqtr4di |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ·𝑠 ‘ 𝑡 ) = × ) |
30 |
29
|
oveqd |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) |
31 |
27 30
|
eqeq12d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) |
32 |
23 31
|
raleqbidv |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) |
33 |
21 32
|
raleqbidv |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) |
34 |
19 33
|
anbi12d |
⊢ ( ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) ∧ 𝑤 = ( Scalar ‘ 𝑠 ) ) → ( ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
35 |
10 34
|
sbcied |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
36 |
9 35
|
rabeqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ) |
37 |
|
ovex |
⊢ ( 𝑆 GrpHom 𝑇 ) ∈ V |
38 |
37
|
rabex |
⊢ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
39 |
36 7 38
|
ovmpoa |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝑆 LMHom 𝑇 ) = { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ) |
40 |
39
|
eleq2d |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
41 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) |
42 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) |
44 |
41 43
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
45 |
44
|
2ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
47 |
46
|
elrab |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
48 |
|
3anass |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
49 |
47 48
|
bitr4i |
⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ∣ ( 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) |
50 |
40 49
|
bitrdi |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
51 |
8 50
|
biadanii |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |