| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islmhm2.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | islmhm2.c | ⊢ 𝐶  =  ( Base ‘ 𝑇 ) | 
						
							| 3 |  | islmhm2.k | ⊢ 𝐾  =  ( Scalar ‘ 𝑆 ) | 
						
							| 4 |  | islmhm2.l | ⊢ 𝐿  =  ( Scalar ‘ 𝑇 ) | 
						
							| 5 |  | islmhm2.e | ⊢ 𝐸  =  ( Base ‘ 𝐾 ) | 
						
							| 6 |  | islmhm2.p | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 7 |  | islmhm2.q | ⊢  ⨣   =  ( +g ‘ 𝑇 ) | 
						
							| 8 |  | islmhm2.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 9 |  | islmhm2.n | ⊢  ×   =  (  ·𝑠  ‘ 𝑇 ) | 
						
							| 10 | 1 2 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 11 | 3 4 | lmhmsca | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐿  =  𝐾 ) | 
						
							| 12 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 14 |  | lmhmlmod1 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑆  ∈  LMod ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑆  ∈  LMod ) | 
						
							| 16 |  | simpr1 | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝐸 ) | 
						
							| 17 |  | simpr2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 18 | 1 3 8 5 | lmodvscl | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  ·  𝑦 )  ∈  𝐵 ) | 
						
							| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝐵 ) | 
						
							| 20 |  | simpr3 | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 21 | 1 6 7 | ghmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑥  ·  𝑦 )  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 22 | 13 19 20 21 | syl3anc | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 23 | 3 5 1 8 9 | lmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 24 | 23 | 3adant3r3 | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 26 | 22 25 | eqtrd | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 27 | 26 | ralrimivvva | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 28 | 10 11 27 | 3jca | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 30 |  | lmodgrp | ⊢ ( 𝑆  ∈  LMod  →  𝑆  ∈  Grp ) | 
						
							| 31 |  | lmodgrp | ⊢ ( 𝑇  ∈  LMod  →  𝑇  ∈  Grp ) | 
						
							| 32 | 30 31 | anim12i | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  →  ( 𝑆  ∈  Grp  ∧  𝑇  ∈  Grp ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ( 𝑆  ∈  Grp  ∧  𝑇  ∈  Grp ) ) | 
						
							| 34 |  | simpr1 | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 35 | 3 | lmodring | ⊢ ( 𝑆  ∈  LMod  →  𝐾  ∈  Ring ) | 
						
							| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  →  𝐾  ∈  Ring ) | 
						
							| 37 |  | eqid | ⊢ ( 1r ‘ 𝐾 )  =  ( 1r ‘ 𝐾 ) | 
						
							| 38 | 5 37 | ringidcl | ⊢ ( 𝐾  ∈  Ring  →  ( 1r ‘ 𝐾 )  ∈  𝐸 ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑥  =  ( 1r ‘ 𝐾 )  →  ( 𝑥  ·  𝑦 )  =  ( ( 1r ‘ 𝐾 )  ·  𝑦 ) ) | 
						
							| 40 | 39 | fvoveq1d | ⊢ ( 𝑥  =  ( 1r ‘ 𝐾 )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑥  =  ( 1r ‘ 𝐾 )  →  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝑥  =  ( 1r ‘ 𝐾 )  →  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 43 | 40 42 | eqeq12d | ⊢ ( 𝑥  =  ( 1r ‘ 𝐾 )  →  ( ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  ↔  ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 44 | 43 | 2ralbidv | ⊢ ( 𝑥  =  ( 1r ‘ 𝐾 )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 45 | 44 | rspcv | ⊢ ( ( 1r ‘ 𝐾 )  ∈  𝐸  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 46 | 36 38 45 | 3syl | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 47 |  | simplll | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑆  ∈  LMod ) | 
						
							| 48 |  | simprl | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 49 | 1 3 8 37 | lmodvs1 | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑦  ∈  𝐵 )  →  ( ( 1r ‘ 𝐾 )  ·  𝑦 )  =  𝑦 ) | 
						
							| 50 | 47 48 49 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 1r ‘ 𝐾 )  ·  𝑦 )  =  𝑦 ) | 
						
							| 51 | 50 | fvoveq1d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) ) ) | 
						
							| 52 |  | simplrr | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝐿  =  𝐾 ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 1r ‘ 𝐿 )  =  ( 1r ‘ 𝐾 ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 1r ‘ 𝐿 )  ×  ( 𝐹 ‘ 𝑦 ) )  =  ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 55 |  | simpllr | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑇  ∈  LMod ) | 
						
							| 56 |  | simplrl | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 57 | 56 48 | ffvelcdmd | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 58 |  | eqid | ⊢ ( 1r ‘ 𝐿 )  =  ( 1r ‘ 𝐿 ) | 
						
							| 59 | 2 4 9 58 | lmodvs1 | ⊢ ( ( 𝑇  ∈  LMod  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐶 )  →  ( ( 1r ‘ 𝐿 )  ×  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 60 | 55 57 59 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 1r ‘ 𝐿 )  ×  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 61 | 54 60 | eqtr3d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 63 | 51 62 | eqeq12d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  ↔  ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 64 | 63 | 2ralbidva | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( ( 1r ‘ 𝐾 )  ·  𝑦 )  +  𝑧 ) )  =  ( ( ( 1r ‘ 𝐾 )  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 65 | 46 64 | sylibd | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾 ) )  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 66 | 65 | exp32 | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  →  ( 𝐿  =  𝐾  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) ) ) | 
						
							| 67 | 66 | 3imp2 | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 68 | 34 67 | jca | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 69 | 1 2 6 7 | isghm | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ↔  ( ( 𝑆  ∈  Grp  ∧  𝑇  ∈  Grp )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( 𝑦  +  𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 70 | 33 68 69 | sylanbrc | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 71 |  | simpr2 | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  𝐿  =  𝐾 ) | 
						
							| 72 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 73 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 74 | 72 73 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 75 | 70 74 | syl | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 76 | 30 | ad3antrrr | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  Grp ) | 
						
							| 77 | 1 72 | grpidcl | ⊢ ( 𝑆  ∈  Grp  →  ( 0g ‘ 𝑆 )  ∈  𝐵 ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( ( 𝑥  ·  𝑦 )  +  𝑧 )  =  ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) ) | 
						
							| 79 | 78 | fveq2d | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 82 | 79 81 | eqeq12d | ⊢ ( 𝑧  =  ( 0g ‘ 𝑆 )  →  ( ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  ↔  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) | 
						
							| 83 | 82 | rspcv | ⊢ ( ( 0g ‘ 𝑆 )  ∈  𝐵  →  ( ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) | 
						
							| 84 | 76 77 83 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) | 
						
							| 85 |  | simplll | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  LMod ) | 
						
							| 86 |  | simprl | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐸 ) | 
						
							| 87 |  | simprr | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 88 | 85 86 87 18 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝐵 ) | 
						
							| 89 | 1 6 72 | grprid | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( 𝑥  ·  𝑦 )  ∈  𝐵 )  →  ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 90 | 76 88 89 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) )  =  ( 𝑥  ·  𝑦 ) ) | 
						
							| 91 | 90 | fveq2d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) )  =  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) ) ) | 
						
							| 92 |  | simplr3 | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 93 | 92 | oveq2d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 0g ‘ 𝑇 ) ) ) | 
						
							| 94 |  | simpllr | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑇  ∈  LMod ) | 
						
							| 95 | 94 31 | syl | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑇  ∈  Grp ) | 
						
							| 96 |  | simplr2 | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝐿  =  𝐾 ) | 
						
							| 97 | 96 | fveq2d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐾 ) ) | 
						
							| 98 | 97 5 | eqtr4di | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( Base ‘ 𝐿 )  =  𝐸 ) | 
						
							| 99 | 86 98 | eleqtrrd | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ( Base ‘ 𝐿 ) ) | 
						
							| 100 |  | simplr1 | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  𝐹 : 𝐵 ⟶ 𝐶 ) | 
						
							| 101 | 100 87 | ffvelcdmd | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐶 ) | 
						
							| 102 |  | eqid | ⊢ ( Base ‘ 𝐿 )  =  ( Base ‘ 𝐿 ) | 
						
							| 103 | 2 4 9 102 | lmodvscl | ⊢ ( ( 𝑇  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ 𝐿 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐶 )  →  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ∈  𝐶 ) | 
						
							| 104 | 94 99 101 103 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ∈  𝐶 ) | 
						
							| 105 | 2 7 73 | grprid | ⊢ ( ( 𝑇  ∈  Grp  ∧  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ∈  𝐶 )  →  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 0g ‘ 𝑇 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 106 | 95 104 105 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 0g ‘ 𝑇 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 107 | 93 106 | eqtrd | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 108 | 91 107 | eqeq12d | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  ( 0g ‘ 𝑆 ) ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) )  ↔  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 109 | 84 108 | sylibd | ⊢ ( ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  ∧  ( 𝑥  ∈  𝐸  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 110 | 109 | ralimdvva | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) )  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 111 | 110 | 3exp2 | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  →  ( 𝐿  =  𝐾  →  ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 )  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 112 | 111 | com45 | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  →  ( 𝐹 : 𝐵 ⟶ 𝐶  →  ( 𝐿  =  𝐾  →  ( ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) )  →  ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 )  →  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) ) | 
						
							| 113 | 112 | 3imp2 | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ( ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 )  →  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 114 | 75 113 | mpd | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 115 | 3 4 5 1 8 9 | islmhm3 | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  →  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ↔  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ↔  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 117 | 70 71 114 116 | mpbir3and | ⊢ ( ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 118 | 29 117 | impbida | ⊢ ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  →  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ↔  ( 𝐹 : 𝐵 ⟶ 𝐶  ∧  𝐿  =  𝐾  ∧  ∀ 𝑥  ∈  𝐸 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( 𝐹 ‘ ( ( 𝑥  ·  𝑦 )  +  𝑧 ) )  =  ( ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) )  ⨣  ( 𝐹 ‘ 𝑧 ) ) ) ) ) |