Metamath Proof Explorer
Description: Property of a module homomorphism, similar to ismhm . (Contributed by Stefan O'Rear, 7-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
islmhm.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
|
|
islmhm.l |
⊢ 𝐿 = ( Scalar ‘ 𝑇 ) |
|
|
islmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
islmhm.e |
⊢ 𝐸 = ( Base ‘ 𝑆 ) |
|
|
islmhm.m |
⊢ · = ( ·𝑠 ‘ 𝑆 ) |
|
|
islmhm.n |
⊢ × = ( ·𝑠 ‘ 𝑇 ) |
|
Assertion |
islmhm3 |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
islmhm.k |
⊢ 𝐾 = ( Scalar ‘ 𝑆 ) |
2 |
|
islmhm.l |
⊢ 𝐿 = ( Scalar ‘ 𝑇 ) |
3 |
|
islmhm.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
4 |
|
islmhm.e |
⊢ 𝐸 = ( Base ‘ 𝑆 ) |
5 |
|
islmhm.m |
⊢ · = ( ·𝑠 ‘ 𝑆 ) |
6 |
|
islmhm.n |
⊢ × = ( ·𝑠 ‘ 𝑇 ) |
7 |
1 2 3 4 5 6
|
islmhm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
8 |
7
|
baib |
⊢ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐸 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝑥 × ( 𝐹 ‘ 𝑦 ) ) ) ) ) |