| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islmhmd.x | ⊢ 𝑋  =  ( Base ‘ 𝑆 ) | 
						
							| 2 |  | islmhmd.a | ⊢  ·   =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 3 |  | islmhmd.b | ⊢  ×   =  (  ·𝑠  ‘ 𝑇 ) | 
						
							| 4 |  | islmhmd.k | ⊢ 𝐾  =  ( Scalar ‘ 𝑆 ) | 
						
							| 5 |  | islmhmd.j | ⊢ 𝐽  =  ( Scalar ‘ 𝑇 ) | 
						
							| 6 |  | islmhmd.n | ⊢ 𝑁  =  ( Base ‘ 𝐾 ) | 
						
							| 7 |  | islmhmd.s | ⊢ ( 𝜑  →  𝑆  ∈  LMod ) | 
						
							| 8 |  | islmhmd.t | ⊢ ( 𝜑  →  𝑇  ∈  LMod ) | 
						
							| 9 |  | islmhmd.c | ⊢ ( 𝜑  →  𝐽  =  𝐾 ) | 
						
							| 10 |  | islmhmd.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 11 |  | islmhmd.l | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑁  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 12 | 11 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 | 10 9 12 | 3jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐽  =  𝐾  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 14 | 4 5 6 1 2 3 | islmhm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ↔  ( ( 𝑆  ∈  LMod  ∧  𝑇  ∈  LMod )  ∧  ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝐽  =  𝐾  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑋 ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( 𝑥  ×  ( 𝐹 ‘ 𝑦 ) ) ) ) ) | 
						
							| 15 | 7 8 13 14 | syl21anbrc | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) |