Metamath Proof Explorer


Theorem islmim2

Description: An isomorphism of left modules is a homomorphism whose converse is a homomorphism. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion islmim2 ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
3 1 2 islmim ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) )
4 1 2 lmhmf1o ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) → ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ↔ 𝐹 ∈ ( 𝑆 LMHom 𝑅 ) ) )
5 4 pm5.32i ( ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑅 ) ) )
6 3 5 bitri ( 𝐹 ∈ ( 𝑅 LMIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 LMHom 𝑆 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑅 ) ) )