Step |
Hyp |
Ref |
Expression |
1 |
|
islmod.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
islmod.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
islmod.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
islmod.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
5 |
|
islmod.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
6 |
|
islmod.p |
⊢ ⨣ = ( +g ‘ 𝐹 ) |
7 |
|
islmod.t |
⊢ × = ( .r ‘ 𝐹 ) |
8 |
|
islmod.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
9 |
|
fveq2 |
⊢ ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝑊 ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( 𝑔 = 𝑊 → ( Base ‘ 𝑔 ) = 𝑉 ) |
11 |
|
fveq2 |
⊢ ( 𝑔 = 𝑊 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝑊 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( 𝑔 = 𝑊 → ( +g ‘ 𝑔 ) = + ) |
13 |
|
fveq2 |
⊢ ( 𝑔 = 𝑊 → ( Scalar ‘ 𝑔 ) = ( Scalar ‘ 𝑊 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝑔 = 𝑊 → ( Scalar ‘ 𝑔 ) = 𝐹 ) |
15 |
|
fveq2 |
⊢ ( 𝑔 = 𝑊 → ( ·𝑠 ‘ 𝑔 ) = ( ·𝑠 ‘ 𝑊 ) ) |
16 |
15 3
|
eqtr4di |
⊢ ( 𝑔 = 𝑊 → ( ·𝑠 ‘ 𝑔 ) = · ) |
17 |
16
|
sbceq1d |
⊢ ( 𝑔 = 𝑊 → ( [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
18 |
14 17
|
sbceqbid |
⊢ ( 𝑔 = 𝑊 → ( [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
19 |
12 18
|
sbceqbid |
⊢ ( 𝑔 = 𝑊 → ( [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
20 |
10 19
|
sbceqbid |
⊢ ( 𝑔 = 𝑊 → ( [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ 𝑉 / 𝑣 ] [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
21 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
22 |
2
|
fvexi |
⊢ + ∈ V |
23 |
4
|
fvexi |
⊢ 𝐹 ∈ V |
24 |
|
simp3 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
26 |
25 5
|
eqtr4di |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
27 |
24
|
fveq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( +g ‘ 𝑓 ) = ( +g ‘ 𝐹 ) ) |
28 |
27 6
|
eqtr4di |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( +g ‘ 𝑓 ) = ⨣ ) |
29 |
24
|
fveq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( .r ‘ 𝑓 ) = ( .r ‘ 𝐹 ) ) |
30 |
29 7
|
eqtr4di |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( .r ‘ 𝑓 ) = × ) |
31 |
30
|
sbceq1d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ × / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
32 |
7
|
fvexi |
⊢ × ∈ V |
33 |
|
oveq |
⊢ ( 𝑡 = × → ( 𝑞 𝑡 𝑟 ) = ( 𝑞 × 𝑟 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑡 = × → ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑡 = × → ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ) ) |
36 |
35
|
anbi1d |
⊢ ( 𝑡 = × → ( ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝑡 = × → ( ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
38 |
37
|
2ralbidv |
⊢ ( 𝑡 = × → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
39 |
38
|
2ralbidv |
⊢ ( 𝑡 = × → ( ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑡 = × → ( ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
41 |
32 40
|
sbcie |
⊢ ( [ × / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
42 |
24
|
eleq1d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 𝑓 ∈ Ring ↔ 𝐹 ∈ Ring ) ) |
43 |
|
simp1 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → 𝑣 = 𝑉 ) |
44 |
43
|
eleq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ↔ ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ) ) |
45 |
|
simp2 |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → 𝑎 = + ) |
46 |
45
|
oveqd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 𝑤 𝑎 𝑥 ) = ( 𝑤 + 𝑥 ) ) |
47 |
46
|
oveq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) ) |
48 |
45
|
oveqd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ) |
49 |
47 48
|
eqeq12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ↔ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ) ) |
50 |
45
|
oveqd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) |
51 |
50
|
eqeq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ) |
52 |
44 49 51
|
3anbi123d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ↔ ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ) ) |
53 |
24
|
fveq2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 1r ‘ 𝑓 ) = ( 1r ‘ 𝐹 ) ) |
54 |
53 8
|
eqtr4di |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( 1r ‘ 𝑓 ) = 1 ) |
55 |
54
|
oveq1d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = ( 1 𝑠 𝑤 ) ) |
56 |
55
|
eqeq1d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ↔ ( 1 𝑠 𝑤 ) = 𝑤 ) ) |
57 |
56
|
anbi2d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) |
58 |
52 57
|
anbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
59 |
43 58
|
raleqbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
60 |
43 59
|
raleqbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
61 |
60
|
2ralbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
62 |
42 61
|
anbi12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
63 |
41 62
|
syl5bb |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ × / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
64 |
31 63
|
bitrd |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
65 |
28 64
|
sbceqbid |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
66 |
26 65
|
sbceqbid |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
67 |
66
|
sbcbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑎 = + ∧ 𝑓 = 𝐹 ) → ( [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ · / 𝑠 ] [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) ) |
68 |
21 22 23 67
|
sbc3ie |
⊢ ( [ 𝑉 / 𝑣 ] [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ [ · / 𝑠 ] [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ) |
69 |
3
|
fvexi |
⊢ · ∈ V |
70 |
5
|
fvexi |
⊢ 𝐾 ∈ V |
71 |
6
|
fvexi |
⊢ ⨣ ∈ V |
72 |
|
simp2 |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑘 = 𝐾 ) |
73 |
|
simp1 |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑠 = · ) |
74 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑟 𝑠 𝑤 ) = ( 𝑟 · 𝑤 ) ) |
75 |
74
|
eleq1d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ↔ ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
76 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( 𝑟 · ( 𝑤 + 𝑥 ) ) ) |
77 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑟 𝑠 𝑥 ) = ( 𝑟 · 𝑥 ) ) |
78 |
74 77
|
oveq12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ) |
79 |
76 78
|
eqeq12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ↔ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ) ) |
80 |
|
simp3 |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → 𝑝 = ⨣ ) |
81 |
80
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑝 𝑟 ) = ( 𝑞 ⨣ 𝑟 ) ) |
82 |
81
|
oveq1d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 ⨣ 𝑟 ) 𝑠 𝑤 ) ) |
83 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 ⨣ 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) ) |
84 |
82 83
|
eqtrd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) ) |
85 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 𝑤 ) = ( 𝑞 · 𝑤 ) ) |
86 |
85 74
|
oveq12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
87 |
84 86
|
eqeq12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
88 |
75 79 87
|
3anbi123d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ↔ ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) ) |
89 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 × 𝑟 ) · 𝑤 ) ) |
90 |
74
|
oveq2d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) = ( 𝑞 𝑠 ( 𝑟 · 𝑤 ) ) ) |
91 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 ( 𝑟 · 𝑤 ) ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ) |
92 |
90 91
|
eqtrd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ) |
93 |
89 92
|
eqeq12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ↔ ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ) ) |
94 |
73
|
oveqd |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( 1 𝑠 𝑤 ) = ( 1 · 𝑤 ) ) |
95 |
94
|
eqeq1d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 1 𝑠 𝑤 ) = 𝑤 ↔ ( 1 · 𝑤 ) = 𝑤 ) ) |
96 |
93 95
|
anbi12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
97 |
88 96
|
anbi12d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
98 |
97
|
2ralbidv |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
99 |
72 98
|
raleqbidv |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
100 |
72 99
|
raleqbidv |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
101 |
100
|
anbi2d |
⊢ ( ( 𝑠 = · ∧ 𝑘 = 𝐾 ∧ 𝑝 = ⨣ ) → ( ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
102 |
69 70 71 101
|
sbc3ie |
⊢ ( [ · / 𝑠 ] [ 𝐾 / 𝑘 ] [ ⨣ / 𝑝 ] ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 𝑠 ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) + ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( 1 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
103 |
68 102
|
bitri |
⊢ ( [ 𝑉 / 𝑣 ] [ + / 𝑎 ] [ 𝐹 / 𝑓 ] [ · / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |
104 |
20 103
|
bitrdi |
⊢ ( 𝑔 = 𝑊 → ( [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
105 |
|
df-lmod |
⊢ LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } |
106 |
104 105
|
elrab2 |
⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
107 |
|
3anass |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ↔ ( 𝑊 ∈ Grp ∧ ( 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) ) |
108 |
106 107
|
bitr4i |
⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) ) |