| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islmod.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | islmod.a | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | islmod.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | islmod.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | islmod.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 6 |  | islmod.p | ⊢  ⨣   =  ( +g ‘ 𝐹 ) | 
						
							| 7 |  | islmod.t | ⊢  ×   =  ( .r ‘ 𝐹 ) | 
						
							| 8 |  | islmod.u | ⊢  1   =  ( 1r ‘ 𝐹 ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑔  =  𝑊  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 10 | 9 1 | eqtr4di | ⊢ ( 𝑔  =  𝑊  →  ( Base ‘ 𝑔 )  =  𝑉 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑔  =  𝑊  →  ( +g ‘ 𝑔 )  =  ( +g ‘ 𝑊 ) ) | 
						
							| 12 | 11 2 | eqtr4di | ⊢ ( 𝑔  =  𝑊  →  ( +g ‘ 𝑔 )  =   +  ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑔  =  𝑊  →  ( Scalar ‘ 𝑔 )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝑔  =  𝑊  →  ( Scalar ‘ 𝑔 )  =  𝐹 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑔  =  𝑊  →  (  ·𝑠  ‘ 𝑔 )  =  (  ·𝑠  ‘ 𝑊 ) ) | 
						
							| 16 | 15 3 | eqtr4di | ⊢ ( 𝑔  =  𝑊  →  (  ·𝑠  ‘ 𝑔 )  =   ·  ) | 
						
							| 17 | 16 | sbceq1d | ⊢ ( 𝑔  =  𝑊  →  ( [ (  ·𝑠  ‘ 𝑔 )  /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 18 | 14 17 | sbceqbid | ⊢ ( 𝑔  =  𝑊  →  ( [ ( Scalar ‘ 𝑔 )  /  𝑓 ] [ (  ·𝑠  ‘ 𝑔 )  /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [ 𝐹  /  𝑓 ] [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 19 | 12 18 | sbceqbid | ⊢ ( 𝑔  =  𝑊  →  ( [ ( +g ‘ 𝑔 )  /  𝑎 ] [ ( Scalar ‘ 𝑔 )  /  𝑓 ] [ (  ·𝑠  ‘ 𝑔 )  /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [  +   /  𝑎 ] [ 𝐹  /  𝑓 ] [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 20 | 10 19 | sbceqbid | ⊢ ( 𝑔  =  𝑊  →  ( [ ( Base ‘ 𝑔 )  /  𝑣 ] [ ( +g ‘ 𝑔 )  /  𝑎 ] [ ( Scalar ‘ 𝑔 )  /  𝑓 ] [ (  ·𝑠  ‘ 𝑔 )  /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [ 𝑉  /  𝑣 ] [  +   /  𝑎 ] [ 𝐹  /  𝑓 ] [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 21 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 22 | 2 | fvexi | ⊢  +   ∈  V | 
						
							| 23 | 4 | fvexi | ⊢ 𝐹  ∈  V | 
						
							| 24 |  | simp3 | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  𝑓  =  𝐹 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( Base ‘ 𝑓 )  =  ( Base ‘ 𝐹 ) ) | 
						
							| 26 | 25 5 | eqtr4di | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( Base ‘ 𝑓 )  =  𝐾 ) | 
						
							| 27 | 24 | fveq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( +g ‘ 𝑓 )  =  ( +g ‘ 𝐹 ) ) | 
						
							| 28 | 27 6 | eqtr4di | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( +g ‘ 𝑓 )  =   ⨣  ) | 
						
							| 29 | 24 | fveq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( .r ‘ 𝑓 )  =  ( .r ‘ 𝐹 ) ) | 
						
							| 30 | 29 7 | eqtr4di | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( .r ‘ 𝑓 )  =   ×  ) | 
						
							| 31 | 30 | sbceq1d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [  ×   /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 32 | 7 | fvexi | ⊢  ×   ∈  V | 
						
							| 33 |  | oveq | ⊢ ( 𝑡  =   ×   →  ( 𝑞 𝑡 𝑟 )  =  ( 𝑞  ×  𝑟 ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( 𝑡  =   ×   →  ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 ) ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( 𝑡  =   ×   →  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ↔  ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ) ) | 
						
							| 36 | 35 | anbi1d | ⊢ ( 𝑡  =   ×   →  ( ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 )  ↔  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) | 
						
							| 37 | 36 | anbi2d | ⊢ ( 𝑡  =   ×   →  ( ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 38 | 37 | 2ralbidv | ⊢ ( 𝑡  =   ×   →  ( ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 39 | 38 | 2ralbidv | ⊢ ( 𝑡  =   ×   →  ( ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 40 | 39 | anbi2d | ⊢ ( 𝑡  =   ×   →  ( ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 41 | 32 40 | sbcie | ⊢ ( [  ×   /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 42 | 24 | eleq1d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( 𝑓  ∈  Ring  ↔  𝐹  ∈  Ring ) ) | 
						
							| 43 |  | simp1 | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  𝑣  =  𝑉 ) | 
						
							| 44 | 43 | eleq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ↔  ( 𝑟 𝑠 𝑤 )  ∈  𝑉 ) ) | 
						
							| 45 |  | simp2 | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  𝑎  =   +  ) | 
						
							| 46 | 45 | oveqd | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( 𝑤 𝑎 𝑥 )  =  ( 𝑤  +  𝑥 ) ) | 
						
							| 47 | 46 | oveq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) ) ) | 
						
							| 48 | 45 | oveqd | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) ) ) | 
						
							| 49 | 47 48 | eqeq12d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ↔  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) ) ) ) | 
						
							| 50 | 45 | oveqd | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) ) | 
						
							| 51 | 50 | eqeq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) )  ↔  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) ) ) | 
						
							| 52 | 44 49 51 | 3anbi123d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ↔  ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) ) ) ) | 
						
							| 53 | 24 | fveq2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( 1r ‘ 𝑓 )  =  ( 1r ‘ 𝐹 ) ) | 
						
							| 54 | 53 8 | eqtr4di | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( 1r ‘ 𝑓 )  =   1  ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  (  1  𝑠 𝑤 ) ) | 
						
							| 56 | 55 | eqeq1d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤  ↔  (  1  𝑠 𝑤 )  =  𝑤 ) ) | 
						
							| 57 | 56 | anbi2d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 )  ↔  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) | 
						
							| 58 | 52 57 | anbi12d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 59 | 43 58 | raleqbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 60 | 43 59 | raleqbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 61 | 60 | 2ralbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 62 | 42 61 | anbi12d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 63 | 41 62 | bitrid | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( [  ×   /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 64 | 31 63 | bitrd | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 65 | 28 64 | sbceqbid | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [  ⨣   /  𝑝 ] ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 66 | 26 65 | sbceqbid | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [ 𝐾  /  𝑘 ] [  ⨣   /  𝑝 ] ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 67 | 66 | sbcbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑎  =   +   ∧  𝑓  =  𝐹 )  →  ( [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [  ·   /  𝑠 ] [ 𝐾  /  𝑘 ] [  ⨣   /  𝑝 ] ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 68 | 21 22 23 67 | sbc3ie | ⊢ ( [ 𝑉  /  𝑣 ] [  +   /  𝑎 ] [ 𝐹  /  𝑓 ] [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  [  ·   /  𝑠 ] [ 𝐾  /  𝑘 ] [  ⨣   /  𝑝 ] ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 69 | 3 | fvexi | ⊢  ·   ∈  V | 
						
							| 70 | 5 | fvexi | ⊢ 𝐾  ∈  V | 
						
							| 71 | 6 | fvexi | ⊢  ⨣   ∈  V | 
						
							| 72 |  | simp2 | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  𝑘  =  𝐾 ) | 
						
							| 73 |  | simp1 | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  𝑠  =   ·  ) | 
						
							| 74 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑟 𝑠 𝑤 )  =  ( 𝑟  ·  𝑤 ) ) | 
						
							| 75 | 74 | eleq1d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ↔  ( 𝑟  ·  𝑤 )  ∈  𝑉 ) ) | 
						
							| 76 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( 𝑟  ·  ( 𝑤  +  𝑥 ) ) ) | 
						
							| 77 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑟 𝑠 𝑥 )  =  ( 𝑟  ·  𝑥 ) ) | 
						
							| 78 | 74 77 | oveq12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) ) ) | 
						
							| 79 | 76 78 | eqeq12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ↔  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) ) ) ) | 
						
							| 80 |  | simp3 | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  𝑝  =   ⨣  ) | 
						
							| 81 | 80 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑞 𝑝 𝑟 )  =  ( 𝑞  ⨣  𝑟 ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞  ⨣  𝑟 ) 𝑠 𝑤 ) ) | 
						
							| 83 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑞  ⨣  𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 ) ) | 
						
							| 84 | 82 83 | eqtrd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 ) ) | 
						
							| 85 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑞 𝑠 𝑤 )  =  ( 𝑞  ·  𝑤 ) ) | 
						
							| 86 | 85 74 | oveq12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) ) | 
						
							| 87 | 84 86 | eqeq12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) )  ↔  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) ) ) | 
						
							| 88 | 75 79 87 | 3anbi123d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ↔  ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) ) ) ) | 
						
							| 89 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞  ×  𝑟 )  ·  𝑤 ) ) | 
						
							| 90 | 74 | oveq2d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  =  ( 𝑞 𝑠 ( 𝑟  ·  𝑤 ) ) ) | 
						
							| 91 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑞 𝑠 ( 𝑟  ·  𝑤 ) )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) ) ) | 
						
							| 92 | 90 91 | eqtrd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) ) ) | 
						
							| 93 | 89 92 | eqeq12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ↔  ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) ) ) ) | 
						
							| 94 | 73 | oveqd | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  (  1  𝑠 𝑤 )  =  (  1   ·  𝑤 ) ) | 
						
							| 95 | 94 | eqeq1d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( (  1  𝑠 𝑤 )  =  𝑤  ↔  (  1   ·  𝑤 )  =  𝑤 ) ) | 
						
							| 96 | 93 95 | anbi12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 )  ↔  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) | 
						
							| 97 | 88 96 | anbi12d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) )  ↔  ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 98 | 97 | 2ralbidv | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 99 | 72 98 | raleqbidv | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 100 | 72 99 | raleqbidv | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) )  ↔  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 101 | 100 | anbi2d | ⊢ ( ( 𝑠  =   ·   ∧  𝑘  =  𝐾  ∧  𝑝  =   ⨣  )  →  ( ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 102 | 69 70 71 101 | sbc3ie | ⊢ ( [  ·   /  𝑠 ] [ 𝐾  /  𝑘 ] [  ⨣   /  𝑝 ] ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑉  ∧  ( 𝑟 𝑠 ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 )  +  ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  (  1  𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 103 | 68 102 | bitri | ⊢ ( [ 𝑉  /  𝑣 ] [  +   /  𝑎 ] [ 𝐹  /  𝑓 ] [  ·   /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 104 | 20 103 | bitrdi | ⊢ ( 𝑔  =  𝑊  →  ( [ ( Base ‘ 𝑔 )  /  𝑣 ] [ ( +g ‘ 𝑔 )  /  𝑎 ] [ ( Scalar ‘ 𝑔 )  /  𝑓 ] [ (  ·𝑠  ‘ 𝑔 )  /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) )  ↔  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 105 |  | df-lmod | ⊢ LMod  =  { 𝑔  ∈  Grp  ∣  [ ( Base ‘ 𝑔 )  /  𝑣 ] [ ( +g ‘ 𝑔 )  /  𝑎 ] [ ( Scalar ‘ 𝑔 )  /  𝑓 ] [ (  ·𝑠  ‘ 𝑔 )  /  𝑠 ] [ ( Base ‘ 𝑓 )  /  𝑘 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ( 𝑓  ∈  Ring  ∧  ∀ 𝑞  ∈  𝑘 ∀ 𝑟  ∈  𝑘 ∀ 𝑥  ∈  𝑣 ∀ 𝑤  ∈  𝑣 ( ( ( 𝑟 𝑠 𝑤 )  ∈  𝑣  ∧  ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) )  =  ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) )  ∧  ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 )  =  ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) )  ∧  ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 )  =  ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) )  ∧  ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 )  =  𝑤 ) ) ) } | 
						
							| 106 | 104 105 | elrab2 | ⊢ ( 𝑊  ∈  LMod  ↔  ( 𝑊  ∈  Grp  ∧  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 107 |  | 3anass | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) )  ↔  ( 𝑊  ∈  Grp  ∧  ( 𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) ) | 
						
							| 108 | 106 107 | bitr4i | ⊢ ( 𝑊  ∈  LMod  ↔  ( 𝑊  ∈  Grp  ∧  𝐹  ∈  Ring  ∧  ∀ 𝑞  ∈  𝐾 ∀ 𝑟  ∈  𝐾 ∀ 𝑥  ∈  𝑉 ∀ 𝑤  ∈  𝑉 ( ( ( 𝑟  ·  𝑤 )  ∈  𝑉  ∧  ( 𝑟  ·  ( 𝑤  +  𝑥 ) )  =  ( ( 𝑟  ·  𝑤 )  +  ( 𝑟  ·  𝑥 ) )  ∧  ( ( 𝑞  ⨣  𝑟 )  ·  𝑤 )  =  ( ( 𝑞  ·  𝑤 )  +  ( 𝑟  ·  𝑤 ) ) )  ∧  ( ( ( 𝑞  ×  𝑟 )  ·  𝑤 )  =  ( 𝑞  ·  ( 𝑟  ·  𝑤 ) )  ∧  (  1   ·  𝑤 )  =  𝑤 ) ) ) ) |