| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islmodd.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
| 2 |
|
islmodd.a |
⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) |
| 3 |
|
islmodd.f |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 4 |
|
islmodd.s |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) |
| 5 |
|
islmodd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) |
| 6 |
|
islmodd.p |
⊢ ( 𝜑 → ⨣ = ( +g ‘ 𝐹 ) ) |
| 7 |
|
islmodd.t |
⊢ ( 𝜑 → × = ( .r ‘ 𝐹 ) ) |
| 8 |
|
islmodd.u |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐹 ) ) |
| 9 |
|
islmodd.r |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 10 |
|
islmodd.l |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 11 |
|
islmodd.w |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 12 |
|
islmodd.c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 13 |
|
islmodd.d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 14 |
|
islmodd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 15 |
|
islmodd.g |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 16 |
3 9
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 17 |
11
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 18 |
17
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
| 19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 · 𝑦 ) = ( 𝑟 · 𝑦 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( 𝑥 = 𝑟 → ( ( 𝑥 · 𝑦 ) ∈ 𝑉 ↔ ( 𝑟 · 𝑦 ) ∈ 𝑉 ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑟 · 𝑦 ) = ( 𝑟 · 𝑤 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑟 · 𝑦 ) ∈ 𝑉 ↔ ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 23 |
20 22
|
rspc2v |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ( 𝑥 · 𝑦 ) ∈ 𝑉 → ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 24 |
23
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ( 𝑥 · 𝑦 ) ∈ 𝑉 → ( 𝑟 · 𝑤 ) ∈ 𝑉 ) ) |
| 25 |
18 24
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( 𝑟 · 𝑤 ) ∈ 𝑉 ) |
| 26 |
12
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( 𝑟 · ( 𝑦 + 𝑧 ) ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 · 𝑧 ) = ( 𝑟 · 𝑧 ) ) |
| 29 |
19 28
|
oveq12d |
⊢ ( 𝑥 = 𝑟 → ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) = ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) ) |
| 30 |
27 29
|
eqeq12d |
⊢ ( 𝑥 = 𝑟 → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ↔ ( 𝑟 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 + 𝑧 ) = ( 𝑤 + 𝑧 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑟 · ( 𝑦 + 𝑧 ) ) = ( 𝑟 · ( 𝑤 + 𝑧 ) ) ) |
| 33 |
21
|
oveq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) ) |
| 34 |
32 33
|
eqeq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑟 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑟 · 𝑦 ) + ( 𝑟 · 𝑧 ) ) ↔ ( 𝑟 · ( 𝑤 + 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑤 + 𝑧 ) = ( 𝑤 + 𝑢 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑧 = 𝑢 → ( 𝑟 · ( 𝑤 + 𝑧 ) ) = ( 𝑟 · ( 𝑤 + 𝑢 ) ) ) |
| 37 |
|
oveq2 |
⊢ ( 𝑧 = 𝑢 → ( 𝑟 · 𝑧 ) = ( 𝑟 · 𝑢 ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) |
| 39 |
36 38
|
eqeq12d |
⊢ ( 𝑧 = 𝑢 → ( ( 𝑟 · ( 𝑤 + 𝑧 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑧 ) ) ↔ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 40 |
30 34 39
|
rspc3v |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ∧ 𝑢 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 41 |
40
|
3com23 |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 42 |
41
|
3expb |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 43 |
42
|
adantll |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑉 ∀ 𝑧 ∈ 𝑉 ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) ) |
| 44 |
26 43
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ) |
| 45 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → 𝑥 ∈ 𝐵 ) |
| 46 |
13
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑉 → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) ) ) |
| 47 |
46
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 48 |
47
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 49 |
45 48
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 50 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → 𝑟 ∈ 𝐵 ) |
| 51 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → 𝑤 ∈ 𝑉 ) |
| 52 |
|
oveq2 |
⊢ ( 𝑦 = 𝑟 → ( 𝑥 ⨣ 𝑦 ) = ( 𝑥 ⨣ 𝑟 ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝑦 = 𝑟 → ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑦 = 𝑟 → ( 𝑦 · 𝑧 ) = ( 𝑟 · 𝑧 ) ) |
| 55 |
54
|
oveq2d |
⊢ ( 𝑦 = 𝑟 → ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) = ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) ) |
| 56 |
53 55
|
eqeq12d |
⊢ ( 𝑦 = 𝑟 → ( ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) = ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) ) |
| 58 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑥 · 𝑧 ) = ( 𝑥 · 𝑤 ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑟 · 𝑧 ) = ( 𝑟 · 𝑤 ) ) |
| 60 |
58 59
|
oveq12d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
| 61 |
57 60
|
eqeq12d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 ⨣ 𝑟 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑟 · 𝑧 ) ) ↔ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 62 |
56 61
|
rspc2v |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 63 |
50 51 62
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 ⨣ 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 64 |
49 63
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
| 65 |
25 44 64
|
3jca |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
| 66 |
14
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝑉 → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) ) ) ) |
| 67 |
66
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 68 |
67
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 69 |
45 68
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 70 |
|
oveq2 |
⊢ ( 𝑦 = 𝑟 → ( 𝑥 × 𝑦 ) = ( 𝑥 × 𝑟 ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝑦 = 𝑟 → ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( ( 𝑥 × 𝑟 ) · 𝑧 ) ) |
| 72 |
54
|
oveq2d |
⊢ ( 𝑦 = 𝑟 → ( 𝑥 · ( 𝑦 · 𝑧 ) ) = ( 𝑥 · ( 𝑟 · 𝑧 ) ) ) |
| 73 |
71 72
|
eqeq12d |
⊢ ( 𝑦 = 𝑟 → ( ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ↔ ( ( 𝑥 × 𝑟 ) · 𝑧 ) = ( 𝑥 · ( 𝑟 · 𝑧 ) ) ) ) |
| 74 |
|
oveq2 |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 × 𝑟 ) · 𝑧 ) = ( ( 𝑥 × 𝑟 ) · 𝑤 ) ) |
| 75 |
59
|
oveq2d |
⊢ ( 𝑧 = 𝑤 → ( 𝑥 · ( 𝑟 · 𝑧 ) ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) |
| 76 |
74 75
|
eqeq12d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 × 𝑟 ) · 𝑧 ) = ( 𝑥 · ( 𝑟 · 𝑧 ) ) ↔ ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) ) |
| 77 |
73 76
|
rspc2v |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝑤 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) ) |
| 78 |
50 51 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝑉 ( ( 𝑥 × 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) ) |
| 79 |
69 78
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ) |
| 80 |
15
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ( 1 · 𝑥 ) = 𝑥 ) |
| 81 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 1 · 𝑥 ) = ( 1 · 𝑤 ) ) |
| 82 |
|
id |
⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) |
| 83 |
81 82
|
eqeq12d |
⊢ ( 𝑥 = 𝑤 → ( ( 1 · 𝑥 ) = 𝑥 ↔ ( 1 · 𝑤 ) = 𝑤 ) ) |
| 84 |
83
|
rspcv |
⊢ ( 𝑤 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 1 · 𝑥 ) = 𝑥 → ( 1 · 𝑤 ) = 𝑤 ) ) |
| 85 |
84
|
ad2antll |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 1 · 𝑥 ) = 𝑥 → ( 1 · 𝑤 ) = 𝑤 ) ) |
| 86 |
80 85
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( 1 · 𝑤 ) = 𝑤 ) |
| 87 |
65 79 86
|
jca32 |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) ) → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 88 |
87
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) ∧ ( 𝑢 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉 ) ) → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 89 |
88
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 90 |
89
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑟 ∈ 𝐵 ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ) |
| 91 |
3
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 92 |
5 91
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 93 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑟 · 𝑤 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 94 |
93 1
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ↔ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ) ) |
| 95 |
|
eqidd |
⊢ ( 𝜑 → 𝑟 = 𝑟 ) |
| 96 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑤 + 𝑢 ) = ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) |
| 97 |
4 95 96
|
oveq123d |
⊢ ( 𝜑 → ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) ) |
| 98 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑟 · 𝑢 ) = ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) |
| 99 |
2 93 98
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ) |
| 100 |
97 99
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ↔ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ) ) |
| 101 |
3
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝐹 ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 102 |
6 101
|
eqtrd |
⊢ ( 𝜑 → ⨣ = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 103 |
102
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ⨣ 𝑟 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ) |
| 104 |
|
eqidd |
⊢ ( 𝜑 → 𝑤 = 𝑤 ) |
| 105 |
4 103 104
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 106 |
4
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 · 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 107 |
2 106 93
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 108 |
105 107
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 109 |
94 100 108
|
3anbi123d |
⊢ ( 𝜑 → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ↔ ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ) ) |
| 110 |
3
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 111 |
7 110
|
eqtrd |
⊢ ( 𝜑 → × = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 112 |
111
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 × 𝑟 ) = ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ) |
| 113 |
4 112 104
|
oveq123d |
⊢ ( 𝜑 → ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 114 |
|
eqidd |
⊢ ( 𝜑 → 𝑥 = 𝑥 ) |
| 115 |
4 114 93
|
oveq123d |
⊢ ( 𝜑 → ( 𝑥 · ( 𝑟 · 𝑤 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 116 |
113 115
|
eqeq12d |
⊢ ( 𝜑 → ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ) |
| 117 |
3
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 118 |
8 117
|
eqtrd |
⊢ ( 𝜑 → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 119 |
4 118 104
|
oveq123d |
⊢ ( 𝜑 → ( 1 · 𝑤 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 120 |
119
|
eqeq1d |
⊢ ( 𝜑 → ( ( 1 · 𝑤 ) = 𝑤 ↔ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) |
| 121 |
116 120
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ↔ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) |
| 122 |
109 121
|
anbi12d |
⊢ ( 𝜑 → ( ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 123 |
1 122
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 124 |
1 123
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 125 |
92 124
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 126 |
92 125
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑟 ∈ 𝐵 ∀ 𝑢 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑢 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑢 ) ) ∧ ( ( 𝑥 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑥 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑥 × 𝑟 ) · 𝑤 ) = ( 𝑥 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 127 |
90 126
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) |
| 128 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 129 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 130 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 131 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 132 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 133 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 134 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 135 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 136 |
128 129 130 131 132 133 134 135
|
islmod |
⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( Scalar ‘ 𝑊 ) ∈ Ring ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑢 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑢 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑢 ) ) ∧ ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 137 |
10 16 127 136
|
syl3anbrc |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |