Metamath Proof Explorer


Theorem islnm

Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypothesis islnm.s 𝑆 = ( LSubSp ‘ 𝑀 )
Assertion islnm ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆 ( 𝑀s 𝑖 ) ∈ LFinGen ) )

Proof

Step Hyp Ref Expression
1 islnm.s 𝑆 = ( LSubSp ‘ 𝑀 )
2 fveq2 ( 𝑤 = 𝑀 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑀 ) )
3 2 1 eqtr4di ( 𝑤 = 𝑀 → ( LSubSp ‘ 𝑤 ) = 𝑆 )
4 oveq1 ( 𝑤 = 𝑀 → ( 𝑤s 𝑖 ) = ( 𝑀s 𝑖 ) )
5 4 eleq1d ( 𝑤 = 𝑀 → ( ( 𝑤s 𝑖 ) ∈ LFinGen ↔ ( 𝑀s 𝑖 ) ∈ LFinGen ) )
6 3 5 raleqbidv ( 𝑤 = 𝑀 → ( ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤s 𝑖 ) ∈ LFinGen ↔ ∀ 𝑖𝑆 ( 𝑀s 𝑖 ) ∈ LFinGen ) )
7 df-lnm LNoeM = { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤s 𝑖 ) ∈ LFinGen }
8 6 7 elrab2 ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆 ( 𝑀s 𝑖 ) ∈ LFinGen ) )