Metamath Proof Explorer


Theorem islnm2

Description: Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnm2.b 𝐵 = ( Base ‘ 𝑀 )
islnm2.s 𝑆 = ( LSubSp ‘ 𝑀 )
islnm2.n 𝑁 = ( LSpan ‘ 𝑀 )
Assertion islnm2 ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 islnm2.b 𝐵 = ( Base ‘ 𝑀 )
2 islnm2.s 𝑆 = ( LSubSp ‘ 𝑀 )
3 islnm2.n 𝑁 = ( LSpan ‘ 𝑀 )
4 2 islnm ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆 ( 𝑀s 𝑖 ) ∈ LFinGen ) )
5 eqid ( 𝑀s 𝑖 ) = ( 𝑀s 𝑖 )
6 5 2 3 1 islssfg2 ( ( 𝑀 ∈ LMod ∧ 𝑖𝑆 ) → ( ( 𝑀s 𝑖 ) ∈ LFinGen ↔ ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) ( 𝑁𝑔 ) = 𝑖 ) )
7 eqcom ( ( 𝑁𝑔 ) = 𝑖𝑖 = ( 𝑁𝑔 ) )
8 7 rexbii ( ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) ( 𝑁𝑔 ) = 𝑖 ↔ ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) )
9 6 8 bitrdi ( ( 𝑀 ∈ LMod ∧ 𝑖𝑆 ) → ( ( 𝑀s 𝑖 ) ∈ LFinGen ↔ ∃ 𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
10 9 ralbidva ( 𝑀 ∈ LMod → ( ∀ 𝑖𝑆 ( 𝑀s 𝑖 ) ∈ LFinGen ↔ ∀ 𝑖𝑆𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
11 10 pm5.32i ( ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆 ( 𝑀s 𝑖 ) ∈ LFinGen ) ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
12 4 11 bitri ( 𝑀 ∈ LNoeM ↔ ( 𝑀 ∈ LMod ∧ ∀ 𝑖𝑆𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )