Step |
Hyp |
Ref |
Expression |
1 |
|
lnoval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
lnoval.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
lnoval.3 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
4 |
|
lnoval.4 |
⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) |
5 |
|
lnoval.5 |
⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) |
6 |
|
lnoval.6 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) |
7 |
|
lnoval.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
8 |
1 2 3 4 5 6 7
|
lnoval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐿 = { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ) |
9 |
8
|
eleq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ 𝑇 ∈ { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ) ) |
10 |
|
fveq1 |
⊢ ( 𝑤 = 𝑇 → ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑤 = 𝑇 → ( 𝑤 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑤 = 𝑇 → ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) = ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) ) |
13 |
|
fveq1 |
⊢ ( 𝑤 = 𝑇 → ( 𝑤 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑧 ) ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑤 = 𝑇 → ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) |
15 |
10 14
|
eqeq12d |
⊢ ( 𝑤 = 𝑇 → ( ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
16 |
15
|
2ralbidv |
⊢ ( 𝑤 = 𝑇 → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑤 = 𝑇 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
18 |
17
|
elrab |
⊢ ( 𝑇 ∈ { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ↔ ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
19 |
2
|
fvexi |
⊢ 𝑌 ∈ V |
20 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
21 |
19 20
|
elmap |
⊢ ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑇 : 𝑋 ⟶ 𝑌 ) |
22 |
21
|
anbi1i |
⊢ ( ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
23 |
18 22
|
bitri |
⊢ ( 𝑇 ∈ { 𝑤 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) |
24 |
9 23
|
bitrdi |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) ) |