Metamath Proof Explorer


Theorem islno

Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lnoval.1 𝑋 = ( BaseSet ‘ 𝑈 )
lnoval.2 𝑌 = ( BaseSet ‘ 𝑊 )
lnoval.3 𝐺 = ( +𝑣𝑈 )
lnoval.4 𝐻 = ( +𝑣𝑊 )
lnoval.5 𝑅 = ( ·𝑠OLD𝑈 )
lnoval.6 𝑆 = ( ·𝑠OLD𝑊 )
lnoval.7 𝐿 = ( 𝑈 LnOp 𝑊 )
Assertion islno ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇𝐿 ↔ ( 𝑇 : 𝑋𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 lnoval.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 lnoval.2 𝑌 = ( BaseSet ‘ 𝑊 )
3 lnoval.3 𝐺 = ( +𝑣𝑈 )
4 lnoval.4 𝐻 = ( +𝑣𝑊 )
5 lnoval.5 𝑅 = ( ·𝑠OLD𝑈 )
6 lnoval.6 𝑆 = ( ·𝑠OLD𝑊 )
7 lnoval.7 𝐿 = ( 𝑈 LnOp 𝑊 )
8 1 2 3 4 5 6 7 lnoval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐿 = { 𝑤 ∈ ( 𝑌m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) } )
9 8 eleq2d ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇𝐿𝑇 ∈ { 𝑤 ∈ ( 𝑌m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) } ) )
10 fveq1 ( 𝑤 = 𝑇 → ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) )
11 fveq1 ( 𝑤 = 𝑇 → ( 𝑤𝑦 ) = ( 𝑇𝑦 ) )
12 11 oveq2d ( 𝑤 = 𝑇 → ( 𝑥 𝑆 ( 𝑤𝑦 ) ) = ( 𝑥 𝑆 ( 𝑇𝑦 ) ) )
13 fveq1 ( 𝑤 = 𝑇 → ( 𝑤𝑧 ) = ( 𝑇𝑧 ) )
14 12 13 oveq12d ( 𝑤 = 𝑇 → ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) )
15 10 14 eqeq12d ( 𝑤 = 𝑇 → ( ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) )
16 15 2ralbidv ( 𝑤 = 𝑇 → ( ∀ 𝑦𝑋𝑧𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) ↔ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) )
17 16 ralbidv ( 𝑤 = 𝑇 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) )
18 17 elrab ( 𝑇 ∈ { 𝑤 ∈ ( 𝑌m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) } ↔ ( 𝑇 ∈ ( 𝑌m 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) )
19 2 fvexi 𝑌 ∈ V
20 1 fvexi 𝑋 ∈ V
21 19 20 elmap ( 𝑇 ∈ ( 𝑌m 𝑋 ) ↔ 𝑇 : 𝑋𝑌 )
22 21 anbi1i ( ( 𝑇 ∈ ( 𝑌m 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) ↔ ( 𝑇 : 𝑋𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) )
23 18 22 bitri ( 𝑇 ∈ { 𝑤 ∈ ( 𝑌m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑤𝑦 ) ) 𝐻 ( 𝑤𝑧 ) ) } ↔ ( 𝑇 : 𝑋𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) )
24 9 23 bitrdi ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇𝐿 ↔ ( 𝑇 : 𝑋𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝑋𝑧𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑇𝑦 ) ) 𝐻 ( 𝑇𝑧 ) ) ) ) )