| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
hpg.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
hpg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
hpg.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
| 5 |
|
islnopp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
islnopp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 8 |
7
|
anbi1d |
⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑢 = 𝐴 → ( 𝑢 𝐼 𝑣 ) = ( 𝐴 𝐼 𝑣 ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝑢 = 𝐴 → ( 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ↔ 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ) |
| 11 |
10
|
rexbidv |
⊢ ( 𝑢 = 𝐴 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ) |
| 12 |
8 11
|
anbi12d |
⊢ ( 𝑢 = 𝐴 → ( ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ) ) |
| 13 |
|
eleq1 |
⊢ ( 𝑣 = 𝐵 → ( 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝑣 = 𝐵 → ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐴 𝐼 𝑣 ) = ( 𝐴 𝐼 𝐵 ) ) |
| 16 |
15
|
eleq2d |
⊢ ( 𝑣 = 𝐵 → ( 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ↔ 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( 𝑣 = 𝐵 → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 18 |
14 17
|
anbi12d |
⊢ ( 𝑣 = 𝐵 → ( ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝑣 ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 19 |
|
simpl |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑎 = 𝑢 ) |
| 20 |
19
|
eleq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑏 = 𝑣 ) |
| 22 |
21
|
eleq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ↔ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 23 |
20 22
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ↔ ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 24 |
|
oveq12 |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑎 𝐼 𝑏 ) = ( 𝑢 𝐼 𝑣 ) ) |
| 25 |
24
|
eleq2d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ) |
| 26 |
25
|
rexbidv |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ) |
| 27 |
23 26
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) ) ) |
| 28 |
27
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) } |
| 29 |
4 28
|
eqtri |
⊢ 𝑂 = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑣 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑢 𝐼 𝑣 ) ) } |
| 30 |
12 18 29
|
brabg |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) → ( 𝐴 𝑂 𝐵 ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 31 |
5 6 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 32 |
5
|
biantrurd |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷 ) ) ) |
| 33 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ↔ ( 𝐴 ∈ 𝑃 ∧ ¬ 𝐴 ∈ 𝐷 ) ) |
| 34 |
32 33
|
bitr4di |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝐷 ↔ 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 35 |
6
|
biantrurd |
⊢ ( 𝜑 → ( ¬ 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷 ) ) ) |
| 36 |
|
eldif |
⊢ ( 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ↔ ( 𝐵 ∈ 𝑃 ∧ ¬ 𝐵 ∈ 𝐷 ) ) |
| 37 |
35 36
|
bitr4di |
⊢ ( 𝜑 → ( ¬ 𝐵 ∈ 𝐷 ↔ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) |
| 38 |
34 37
|
anbi12d |
⊢ ( 𝜑 → ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ↔ ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ) ) |
| 39 |
38
|
anbi1d |
⊢ ( 𝜑 → ( ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ↔ ( ( 𝐴 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝐵 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |
| 40 |
31 39
|
bitr4d |
⊢ ( 𝜑 → ( 𝐴 𝑂 𝐵 ↔ ( ( ¬ 𝐴 ∈ 𝐷 ∧ ¬ 𝐵 ∈ 𝐷 ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝐴 𝐼 𝐵 ) ) ) ) |