Metamath Proof Explorer


Theorem islnr2

Description: Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnr2.b 𝐵 = ( Base ‘ 𝑅 )
islnr2.u 𝑈 = ( LIdeal ‘ 𝑅 )
islnr2.n 𝑁 = ( RSpan ‘ 𝑅 )
Assertion islnr2 ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑖𝑈𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 islnr2.b 𝐵 = ( Base ‘ 𝑅 )
2 islnr2.u 𝑈 = ( LIdeal ‘ 𝑅 )
3 islnr2.n 𝑁 = ( RSpan ‘ 𝑅 )
4 islnr ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ( ringLMod ‘ 𝑅 ) ∈ LNoeM ) )
5 rlmlmod ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod )
6 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
7 1 6 eqtri 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
8 lidlval ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
9 2 8 eqtri 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) )
10 rspval ( RSpan ‘ 𝑅 ) = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
11 3 10 eqtri 𝑁 = ( LSpan ‘ ( ringLMod ‘ 𝑅 ) )
12 7 9 11 islnm2 ( ( ringLMod ‘ 𝑅 ) ∈ LNoeM ↔ ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ ∀ 𝑖𝑈𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
13 12 baib ( ( ringLMod ‘ 𝑅 ) ∈ LMod → ( ( ringLMod ‘ 𝑅 ) ∈ LNoeM ↔ ∀ 𝑖𝑈𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
14 5 13 syl ( 𝑅 ∈ Ring → ( ( ringLMod ‘ 𝑅 ) ∈ LNoeM ↔ ∀ 𝑖𝑈𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
15 14 pm5.32i ( ( 𝑅 ∈ Ring ∧ ( ringLMod ‘ 𝑅 ) ∈ LNoeM ) ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑖𝑈𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )
16 4 15 bitri ( 𝑅 ∈ LNoeR ↔ ( 𝑅 ∈ Ring ∧ ∀ 𝑖𝑈𝑔 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝑖 = ( 𝑁𝑔 ) ) )