| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
lpval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
| 3 |
2
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) ) |
| 4 |
|
id |
⊢ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
| 5 |
|
id |
⊢ ( 𝑥 = 𝑃 → 𝑥 = 𝑃 ) |
| 6 |
|
sneq |
⊢ ( 𝑥 = 𝑃 → { 𝑥 } = { 𝑃 } ) |
| 7 |
6
|
difeq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝑆 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑃 } ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝑃 → ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
| 9 |
5 8
|
eleq12d |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
| 10 |
4 9
|
elab3 |
⊢ ( 𝑃 ∈ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
| 11 |
3 10
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |