Step |
Hyp |
Ref |
Expression |
1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
islp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
4 |
|
ssdifss |
⊢ ( 𝑆 ⊆ 𝑋 → ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ) |
5 |
1
|
neindisj2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∖ { 𝑃 } ) ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) |
6 |
4 5
|
syl3an2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) |
7 |
3 6
|
bitrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑃 } ) ) ≠ ∅ ) ) |