Step |
Hyp |
Ref |
Expression |
1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
clslp |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
3 |
2
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
4 |
|
elun |
⊢ ( 𝑃 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
5 |
|
df-or |
⊢ ( ( 𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
6 |
4 5
|
bitri |
⊢ ( 𝑃 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
7 |
3 6
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
8 |
7
|
biimpd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ( ¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
9 |
8
|
imp32 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ¬ 𝑃 ∈ 𝑆 ) ) → 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |