| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p | ⊢ 𝑃  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lpival.k | ⊢ 𝐾  =  ( RSpan ‘ 𝑅 ) | 
						
							| 3 |  | lpival.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 | 1 2 3 | lpival | ⊢ ( 𝑅  ∈  Ring  →  𝑃  =  ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼  ∈  𝑃  ↔  𝐼  ∈  ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) ) | 
						
							| 6 |  | eliun | ⊢ ( 𝐼  ∈  ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) }  ↔  ∃ 𝑔  ∈  𝐵 𝐼  ∈  { ( 𝐾 ‘ { 𝑔 } ) } ) | 
						
							| 7 |  | fvex | ⊢ ( 𝐾 ‘ { 𝑔 } )  ∈  V | 
						
							| 8 | 7 | elsn2 | ⊢ ( 𝐼  ∈  { ( 𝐾 ‘ { 𝑔 } ) }  ↔  𝐼  =  ( 𝐾 ‘ { 𝑔 } ) ) | 
						
							| 9 | 8 | rexbii | ⊢ ( ∃ 𝑔  ∈  𝐵 𝐼  ∈  { ( 𝐾 ‘ { 𝑔 } ) }  ↔  ∃ 𝑔  ∈  𝐵 𝐼  =  ( 𝐾 ‘ { 𝑔 } ) ) | 
						
							| 10 | 6 9 | bitri | ⊢ ( 𝐼  ∈  ∪  𝑔  ∈  𝐵 { ( 𝐾 ‘ { 𝑔 } ) }  ↔  ∃ 𝑔  ∈  𝐵 𝐼  =  ( 𝐾 ‘ { 𝑔 } ) ) | 
						
							| 11 | 5 10 | bitrdi | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼  ∈  𝑃  ↔  ∃ 𝑔  ∈  𝐵 𝐼  =  ( 𝐾 ‘ { 𝑔 } ) ) ) |