Step |
Hyp |
Ref |
Expression |
1 |
|
lpival.p |
⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) |
2 |
|
lpival.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
lpival.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
1 2 3
|
lpival |
⊢ ( 𝑅 ∈ Ring → 𝑃 = ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) |
5 |
4
|
eleq2d |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ) ) |
6 |
|
eliun |
⊢ ( 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ↔ ∃ 𝑔 ∈ 𝐵 𝐼 ∈ { ( 𝐾 ‘ { 𝑔 } ) } ) |
7 |
|
fvex |
⊢ ( 𝐾 ‘ { 𝑔 } ) ∈ V |
8 |
7
|
elsn2 |
⊢ ( 𝐼 ∈ { ( 𝐾 ‘ { 𝑔 } ) } ↔ 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) |
9 |
8
|
rexbii |
⊢ ( ∃ 𝑔 ∈ 𝐵 𝐼 ∈ { ( 𝐾 ‘ { 𝑔 } ) } ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) |
10 |
6 9
|
bitri |
⊢ ( 𝐼 ∈ ∪ 𝑔 ∈ 𝐵 { ( 𝐾 ‘ { 𝑔 } ) } ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) |
11 |
5 10
|
bitrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑔 ∈ 𝐵 𝐼 = ( 𝐾 ‘ { 𝑔 } ) ) ) |