| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpival.p | ⊢ 𝑃  =  ( LPIdeal ‘ 𝑅 ) | 
						
							| 2 |  | lpiss.u | ⊢ 𝑈  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( LIdeal ‘ 𝑟 )  =  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( LPIdeal ‘ 𝑟 )  =  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 5 | 3 4 | eqeq12d | ⊢ ( 𝑟  =  𝑅  →  ( ( LIdeal ‘ 𝑟 )  =  ( LPIdeal ‘ 𝑟 )  ↔  ( LIdeal ‘ 𝑅 )  =  ( LPIdeal ‘ 𝑅 ) ) ) | 
						
							| 6 | 2 1 | eqeq12i | ⊢ ( 𝑈  =  𝑃  ↔  ( LIdeal ‘ 𝑅 )  =  ( LPIdeal ‘ 𝑅 ) ) | 
						
							| 7 | 5 6 | bitr4di | ⊢ ( 𝑟  =  𝑅  →  ( ( LIdeal ‘ 𝑟 )  =  ( LPIdeal ‘ 𝑟 )  ↔  𝑈  =  𝑃 ) ) | 
						
							| 8 |  | df-lpir | ⊢ LPIR  =  { 𝑟  ∈  Ring  ∣  ( LIdeal ‘ 𝑟 )  =  ( LPIdeal ‘ 𝑟 ) } | 
						
							| 9 | 7 8 | elrab2 | ⊢ ( 𝑅  ∈  LPIR  ↔  ( 𝑅  ∈  Ring  ∧  𝑈  =  𝑃 ) ) |