Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| Assertion | islpir2 | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 2 | lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 3 | 1 2 | islpir | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ) | 
| 4 | eqss | ⊢ ( 𝑈 = 𝑃 ↔ ( 𝑈 ⊆ 𝑃 ∧ 𝑃 ⊆ 𝑈 ) ) | |
| 5 | 1 2 | lpiss | ⊢ ( 𝑅 ∈ Ring → 𝑃 ⊆ 𝑈 ) | 
| 6 | 5 | biantrud | ⊢ ( 𝑅 ∈ Ring → ( 𝑈 ⊆ 𝑃 ↔ ( 𝑈 ⊆ 𝑃 ∧ 𝑃 ⊆ 𝑈 ) ) ) | 
| 7 | 4 6 | bitr4id | ⊢ ( 𝑅 ∈ Ring → ( 𝑈 = 𝑃 ↔ 𝑈 ⊆ 𝑃 ) ) | 
| 8 | 7 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃 ) ) | 
| 9 | 3 8 | bitri | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃 ) ) |