Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
Assertion | islpir2 | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpival.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
2 | lpiss.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
3 | 1 2 | islpir | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ) |
4 | eqss | ⊢ ( 𝑈 = 𝑃 ↔ ( 𝑈 ⊆ 𝑃 ∧ 𝑃 ⊆ 𝑈 ) ) | |
5 | 1 2 | lpiss | ⊢ ( 𝑅 ∈ Ring → 𝑃 ⊆ 𝑈 ) |
6 | 5 | biantrud | ⊢ ( 𝑅 ∈ Ring → ( 𝑈 ⊆ 𝑃 ↔ ( 𝑈 ⊆ 𝑃 ∧ 𝑃 ⊆ 𝑈 ) ) ) |
7 | 4 6 | bitr4id | ⊢ ( 𝑅 ∈ Ring → ( 𝑈 = 𝑃 ↔ 𝑈 ⊆ 𝑃 ) ) |
8 | 7 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃 ) ) |
9 | 3 8 | bitri | ⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 ⊆ 𝑃 ) ) |