Metamath Proof Explorer


Theorem islpir2

Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p 𝑃 = ( LPIdeal ‘ 𝑅 )
lpiss.u 𝑈 = ( LIdeal ‘ 𝑅 )
Assertion islpir2 ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈𝑃 ) )

Proof

Step Hyp Ref Expression
1 lpival.p 𝑃 = ( LPIdeal ‘ 𝑅 )
2 lpiss.u 𝑈 = ( LIdeal ‘ 𝑅 )
3 1 2 islpir ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) )
4 eqss ( 𝑈 = 𝑃 ↔ ( 𝑈𝑃𝑃𝑈 ) )
5 1 2 lpiss ( 𝑅 ∈ Ring → 𝑃𝑈 )
6 5 biantrud ( 𝑅 ∈ Ring → ( 𝑈𝑃 ↔ ( 𝑈𝑃𝑃𝑈 ) ) )
7 4 6 bitr4id ( 𝑅 ∈ Ring → ( 𝑈 = 𝑃𝑈𝑃 ) )
8 7 pm5.32i ( ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ↔ ( 𝑅 ∈ Ring ∧ 𝑈𝑃 ) )
9 3 8 bitri ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈𝑃 ) )