Metamath Proof Explorer


Theorem islpln

Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses lplnset.b 𝐵 = ( Base ‘ 𝐾 )
lplnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lplnset.n 𝑁 = ( LLines ‘ 𝐾 )
lplnset.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion islpln ( 𝐾𝐴 → ( 𝑋𝑃 ↔ ( 𝑋𝐵 ∧ ∃ 𝑦𝑁 𝑦 𝐶 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 lplnset.b 𝐵 = ( Base ‘ 𝐾 )
2 lplnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 lplnset.n 𝑁 = ( LLines ‘ 𝐾 )
4 lplnset.p 𝑃 = ( LPlanes ‘ 𝐾 )
5 1 2 3 4 lplnset ( 𝐾𝐴𝑃 = { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } )
6 5 eleq2d ( 𝐾𝐴 → ( 𝑋𝑃𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } ) )
7 breq2 ( 𝑥 = 𝑋 → ( 𝑦 𝐶 𝑥𝑦 𝐶 𝑋 ) )
8 7 rexbidv ( 𝑥 = 𝑋 → ( ∃ 𝑦𝑁 𝑦 𝐶 𝑥 ↔ ∃ 𝑦𝑁 𝑦 𝐶 𝑋 ) )
9 8 elrab ( 𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑦𝑁 𝑦 𝐶 𝑥 } ↔ ( 𝑋𝐵 ∧ ∃ 𝑦𝑁 𝑦 𝐶 𝑋 ) )
10 6 9 bitrdi ( 𝐾𝐴 → ( 𝑋𝑃 ↔ ( 𝑋𝐵 ∧ ∃ 𝑦𝑁 𝑦 𝐶 𝑋 ) ) )