Metamath Proof Explorer


Theorem islpln2

Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012)

Ref Expression
Hypotheses islpln5.b 𝐵 = ( Base ‘ 𝐾 )
islpln5.l = ( le ‘ 𝐾 )
islpln5.j = ( join ‘ 𝐾 )
islpln5.a 𝐴 = ( Atoms ‘ 𝐾 )
islpln5.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion islpln2 ( 𝐾 ∈ HL → ( 𝑋𝑃 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑋 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 islpln5.b 𝐵 = ( Base ‘ 𝐾 )
2 islpln5.l = ( le ‘ 𝐾 )
3 islpln5.j = ( join ‘ 𝐾 )
4 islpln5.a 𝐴 = ( Atoms ‘ 𝐾 )
5 islpln5.p 𝑃 = ( LPlanes ‘ 𝐾 )
6 1 5 lplnbase ( 𝑋𝑃𝑋𝐵 )
7 6 pm4.71ri ( 𝑋𝑃 ↔ ( 𝑋𝐵𝑋𝑃 ) )
8 1 2 3 4 5 islpln5 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝑃 ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑋 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
9 8 pm5.32da ( 𝐾 ∈ HL → ( ( 𝑋𝐵𝑋𝑃 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑋 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )
10 7 9 syl5bb ( 𝐾 ∈ HL → ( 𝑋𝑃 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑋 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )