Description: The predicate "is a lattice plane" for join of atoms. Version of islpln2a expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islpln2a.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| islpln2a.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| islpln2a.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| islpln2a.p | ⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) | ||
| islpln2a.y | ⊢ 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) | ||
| Assertion | islpln2ah | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑌 ∈ 𝑃 ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | islpln2a.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | islpln2a.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | islpln2a.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | islpln2a.p | ⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) | |
| 5 | islpln2a.y | ⊢ 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) | |
| 6 | 5 | eleq1i | ⊢ ( 𝑌 ∈ 𝑃 ↔ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ 𝑃 ) | 
| 7 | 1 2 3 4 | islpln2a | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑆 ) ∈ 𝑃 ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) | 
| 8 | 6 7 | bitrid | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( 𝑌 ∈ 𝑃 ↔ ( 𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ ( 𝑄 ∨ 𝑅 ) ) ) ) |