Metamath Proof Explorer
		
		
		
		Description:  The predicate "is a lattice plane".  (Contributed by NM, 17-Jun-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lplnset.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | lplnset.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
					
						|  |  | lplnset.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
					
						|  |  | lplnset.p | ⊢ 𝑃  =  ( LPlanes ‘ 𝐾 ) | 
				
					|  | Assertion | islpln4 | ⊢  ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  𝑃  ↔  ∃ 𝑦  ∈  𝑁 𝑦 𝐶 𝑋 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lplnset.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lplnset.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 3 |  | lplnset.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
						
							| 4 |  | lplnset.p | ⊢ 𝑃  =  ( LPlanes ‘ 𝐾 ) | 
						
							| 5 | 1 2 3 4 | islpln | ⊢ ( 𝐾  ∈  𝐴  →  ( 𝑋  ∈  𝑃  ↔  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑦  ∈  𝑁 𝑦 𝐶 𝑋 ) ) ) | 
						
							| 6 | 5 | baibd | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∈  𝑃  ↔  ∃ 𝑦  ∈  𝑁 𝑦 𝐶 𝑋 ) ) |