| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsatset.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lsatset.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lsatset.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
1 2 3 4
|
lsatset |
⊢ ( 𝑊 ∈ 𝑋 → 𝐴 = ran ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑥 } ) ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑈 ∈ 𝐴 ↔ 𝑈 ∈ ran ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑥 } ) ) = ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑥 } ) ) |
| 8 |
|
fvex |
⊢ ( 𝑁 ‘ { 𝑥 } ) ∈ V |
| 9 |
7 8
|
elrnmpti |
⊢ ( 𝑈 ∈ ran ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) |
| 10 |
6 9
|
bitrdi |
⊢ ( 𝑊 ∈ 𝑋 → ( 𝑈 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) 𝑈 = ( 𝑁 ‘ { 𝑥 } ) ) ) |