Step |
Hyp |
Ref |
Expression |
1 |
|
islss3.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
islss3.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
islss3.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
4 |
2 3
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉 ) |
5 |
4
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ 𝑉 ) |
6 |
1 2
|
ressbas2 |
⊢ ( 𝑈 ⊆ 𝑉 → 𝑈 = ( Base ‘ 𝑋 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
8 |
4 7
|
sylan2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
10 |
1 9
|
ressplusg |
⊢ ( 𝑈 ∈ 𝑆 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
13 |
1 12
|
resssca |
⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
16 |
1 15
|
ressvsca |
⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
18 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
19 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
21 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
22 |
12
|
lmodring |
⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
23 |
22
|
adantr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
24 |
3
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
25 |
1
|
subggrp |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑋 ∈ Grp ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ Grp ) |
27 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
28 |
12 15 27 3
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑈 ) |
29 |
28
|
3impb |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ∈ 𝑈 ) |
30 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
31 |
|
simpr1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
32 |
4
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑉 ) |
33 |
|
simpr2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑈 ) |
34 |
32 33
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ 𝑉 ) |
35 |
|
simpr3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) |
36 |
32 35
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑉 ) |
37 |
2 9 12 15 27
|
lmodvsdi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( +g ‘ 𝑊 ) 𝑏 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
38 |
30 31 34 36 37
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( +g ‘ 𝑊 ) 𝑏 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
39 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
40 |
|
simpr1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
41 |
|
simpr2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
42 |
4
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑉 ) |
43 |
|
simpr3 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑈 ) |
44 |
42 43
|
sseldd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → 𝑏 ∈ 𝑉 ) |
45 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
46 |
2 9 12 15 27 45
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
47 |
39 40 41 44 46
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ( +g ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
48 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
49 |
2 12 15 27 48
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
50 |
39 40 41 44 49
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑎 ) ( ·𝑠 ‘ 𝑊 ) 𝑏 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑎 ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) ) |
51 |
5
|
sselda |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑉 ) |
52 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
53 |
2 12 15 52
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
55 |
51 54
|
syldan |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
56 |
8 11 14 17 18 19 20 21 23 26 29 38 47 50 55
|
islmodd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
57 |
5 56
|
jca |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) |
58 |
|
simprl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 ⊆ 𝑉 ) |
59 |
58 6
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
60 |
|
fvex |
⊢ ( Base ‘ 𝑋 ) ∈ V |
61 |
59 60
|
eqeltrdi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 ∈ V ) |
62 |
1 12
|
resssca |
⊢ ( 𝑈 ∈ V → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
63 |
61 62
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
64 |
63
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
65 |
|
eqidd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
66 |
2
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑉 = ( Base ‘ 𝑊 ) ) |
67 |
1 9
|
ressplusg |
⊢ ( 𝑈 ∈ V → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
68 |
61 67
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑋 ) ) |
69 |
68
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( +g ‘ 𝑋 ) = ( +g ‘ 𝑊 ) ) |
70 |
1 15
|
ressvsca |
⊢ ( 𝑈 ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
71 |
61 70
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
72 |
71
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑊 ) ) |
73 |
3
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
74 |
59 58
|
eqsstrrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ⊆ 𝑉 ) |
75 |
|
lmodgrp |
⊢ ( 𝑋 ∈ LMod → 𝑋 ∈ Grp ) |
76 |
75
|
ad2antll |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑋 ∈ Grp ) |
77 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
78 |
77
|
grpbn0 |
⊢ ( 𝑋 ∈ Grp → ( Base ‘ 𝑋 ) ≠ ∅ ) |
79 |
76 78
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ≠ ∅ ) |
80 |
|
eqid |
⊢ ( LSubSp ‘ 𝑋 ) = ( LSubSp ‘ 𝑋 ) |
81 |
77 80
|
lss1 |
⊢ ( 𝑋 ∈ LMod → ( Base ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
82 |
81
|
ad2antll |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
83 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
84 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) |
85 |
|
eqid |
⊢ ( +g ‘ 𝑋 ) = ( +g ‘ 𝑋 ) |
86 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) |
87 |
83 84 85 86 80
|
lsscl |
⊢ ( ( ( Base ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑋 ) ∧ 𝑏 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑎 ) ( +g ‘ 𝑋 ) 𝑏 ) ∈ ( Base ‘ 𝑋 ) ) |
88 |
82 87
|
sylan |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑎 ∈ ( Base ‘ 𝑋 ) ∧ 𝑏 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑎 ) ( +g ‘ 𝑋 ) 𝑏 ) ∈ ( Base ‘ 𝑋 ) ) |
89 |
64 65 66 69 72 73 74 79 88
|
islssd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → ( Base ‘ 𝑋 ) ∈ 𝑆 ) |
90 |
59 89
|
eqeltrd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) → 𝑈 ∈ 𝑆 ) |
91 |
57 90
|
impbida |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑋 ∈ LMod ) ) ) |