Step |
Hyp |
Ref |
Expression |
1 |
|
islss4.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
islss4.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
islss4.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
4 |
|
islss4.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
islss4.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
6 |
5
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
7 |
1 4 2 5
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝑈 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝑈 ) |
8 |
7
|
ralrimivva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) |
9 |
6 8
|
jca |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) |
10 |
3
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ⊆ 𝑉 ) |
11 |
10
|
ad2antrl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑉 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
13 |
12
|
subg0cl |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( 0g ‘ 𝑊 ) ∈ 𝑈 ) |
14 |
13
|
ne0d |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ≠ ∅ ) |
15 |
14
|
ad2antrl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → 𝑈 ≠ ∅ ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
17 |
16
|
subgcl |
⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑎 · 𝑏 ) ∈ 𝑈 ∧ 𝑐 ∈ 𝑈 ) → ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) |
18 |
17
|
3exp |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑈 → ( 𝑐 ∈ 𝑈 → ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑈 → ( 𝑐 ∈ 𝑈 → ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) ) |
20 |
19
|
ralrimdv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑎 · 𝑏 ) ∈ 𝑈 → ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
21 |
20
|
ralimdv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 → ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
22 |
21
|
ralimdv |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
23 |
22
|
impr |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) |
24 |
1 2 3 16 4 5
|
islss |
⊢ ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ∀ 𝑐 ∈ 𝑈 ( ( 𝑎 · 𝑏 ) ( +g ‘ 𝑊 ) 𝑐 ) ∈ 𝑈 ) ) |
25 |
11 15 23 24
|
syl3anbrc |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
26 |
9 25
|
impbida |
⊢ ( 𝑊 ∈ LMod → ( 𝑈 ∈ 𝑆 ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝑈 ( 𝑎 · 𝑏 ) ∈ 𝑈 ) ) ) |