Metamath Proof Explorer


Theorem islssd

Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses islssd.f ( 𝜑𝐹 = ( Scalar ‘ 𝑊 ) )
islssd.b ( 𝜑𝐵 = ( Base ‘ 𝐹 ) )
islssd.v ( 𝜑𝑉 = ( Base ‘ 𝑊 ) )
islssd.p ( 𝜑+ = ( +g𝑊 ) )
islssd.t ( 𝜑· = ( ·𝑠𝑊 ) )
islssd.s ( 𝜑𝑆 = ( LSubSp ‘ 𝑊 ) )
islssd.u ( 𝜑𝑈𝑉 )
islssd.z ( 𝜑𝑈 ≠ ∅ )
islssd.c ( ( 𝜑 ∧ ( 𝑥𝐵𝑎𝑈𝑏𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 )
Assertion islssd ( 𝜑𝑈𝑆 )

Proof

Step Hyp Ref Expression
1 islssd.f ( 𝜑𝐹 = ( Scalar ‘ 𝑊 ) )
2 islssd.b ( 𝜑𝐵 = ( Base ‘ 𝐹 ) )
3 islssd.v ( 𝜑𝑉 = ( Base ‘ 𝑊 ) )
4 islssd.p ( 𝜑+ = ( +g𝑊 ) )
5 islssd.t ( 𝜑· = ( ·𝑠𝑊 ) )
6 islssd.s ( 𝜑𝑆 = ( LSubSp ‘ 𝑊 ) )
7 islssd.u ( 𝜑𝑈𝑉 )
8 islssd.z ( 𝜑𝑈 ≠ ∅ )
9 islssd.c ( ( 𝜑 ∧ ( 𝑥𝐵𝑎𝑈𝑏𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 )
10 7 3 sseqtrd ( 𝜑𝑈 ⊆ ( Base ‘ 𝑊 ) )
11 9 3exp2 ( 𝜑 → ( 𝑥𝐵 → ( 𝑎𝑈 → ( 𝑏𝑈 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) ) )
12 11 imp43 ( ( ( 𝜑𝑥𝐵 ) ∧ ( 𝑎𝑈𝑏𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 )
13 12 ralrimivva ( ( 𝜑𝑥𝐵 ) → ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 )
14 13 ex ( 𝜑 → ( 𝑥𝐵 → ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) )
15 1 fveq2d ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
16 2 15 eqtrd ( 𝜑𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
17 16 eleq2d ( 𝜑 → ( 𝑥𝐵𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
18 4 oveqd ( 𝜑 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑥 · 𝑎 ) ( +g𝑊 ) 𝑏 ) )
19 5 oveqd ( 𝜑 → ( 𝑥 · 𝑎 ) = ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) )
20 19 oveq1d ( 𝜑 → ( ( 𝑥 · 𝑎 ) ( +g𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) )
21 18 20 eqtrd ( 𝜑 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) )
22 21 eleq1d ( 𝜑 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑈 ) )
23 22 2ralbidv ( 𝜑 → ( ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑈 ) )
24 14 17 23 3imtr3d ( 𝜑 → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑈 ) )
25 24 ralrimiv ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑈 )
26 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
27 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
28 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
29 eqid ( +g𝑊 ) = ( +g𝑊 )
30 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
31 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
32 26 27 28 29 30 31 islss ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎𝑈𝑏𝑈 ( ( 𝑥 ( ·𝑠𝑊 ) 𝑎 ) ( +g𝑊 ) 𝑏 ) ∈ 𝑈 ) )
33 10 8 25 32 syl3anbrc ( 𝜑𝑈 ∈ ( LSubSp ‘ 𝑊 ) )
34 33 6 eleqtrrd ( 𝜑𝑈𝑆 )