Step |
Hyp |
Ref |
Expression |
1 |
|
islssd.f |
⊢ ( 𝜑 → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
2 |
|
islssd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐹 ) ) |
3 |
|
islssd.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑊 ) ) |
4 |
|
islssd.p |
⊢ ( 𝜑 → + = ( +g ‘ 𝑊 ) ) |
5 |
|
islssd.t |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑊 ) ) |
6 |
|
islssd.s |
⊢ ( 𝜑 → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
7 |
|
islssd.u |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) |
8 |
|
islssd.z |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
9 |
|
islssd.c |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
10 |
7 3
|
sseqtrd |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
11 |
9
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ( 𝑎 ∈ 𝑈 → ( 𝑏 ∈ 𝑈 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) ) ) |
12 |
11
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈 ) ) → ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
13 |
12
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ) ) |
15 |
1
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
16 |
2 15
|
eqtrd |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
18 |
4
|
oveqd |
⊢ ( 𝜑 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ) |
19 |
5
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 · 𝑎 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 · 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ) |
21 |
18 20
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 · 𝑎 ) + 𝑏 ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝜑 → ( ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
23 |
22
|
2ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝑈 ↔ ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
24 |
14 17 23
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
25 |
24
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
27 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
29 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
30 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
31 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
32 |
26 27 28 29 30 31
|
islss |
⊢ ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ↔ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑎 ∈ 𝑈 ∀ 𝑏 ∈ 𝑈 ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ 𝑈 ) ) |
33 |
10 8 25 32
|
syl3anbrc |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
34 |
33 6
|
eleqtrrd |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |