Step |
Hyp |
Ref |
Expression |
1 |
|
islssfg.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
islssfg.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
islssfg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
5 |
4 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
6 |
1 4
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 = ( Base ‘ 𝑋 ) ) |
8 |
7
|
pweqd |
⊢ ( 𝑈 ∈ 𝑆 → 𝒫 𝑈 = 𝒫 ( Base ‘ 𝑋 ) ) |
9 |
8
|
rexeqdv |
⊢ ( 𝑈 ∈ 𝑆 → ( ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ↔ ∃ 𝑏 ∈ 𝒫 ( Base ‘ 𝑋 ) ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ↔ ∃ 𝑏 ∈ 𝒫 ( Base ‘ 𝑋 ) ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) ) |
11 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝑈 → 𝑏 ⊆ 𝑈 ) |
12 |
|
eqid |
⊢ ( LSpan ‘ 𝑋 ) = ( LSpan ‘ 𝑋 ) |
13 |
1 3 12 2
|
lsslsp |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑏 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑏 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) ) |
14 |
13
|
3expa |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑏 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝑏 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) ) |
15 |
11 14
|
sylan2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝒫 𝑈 ) → ( 𝑁 ‘ 𝑏 ) = ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) ) |
16 |
7
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝒫 𝑈 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝒫 𝑈 ) → ( ( 𝑁 ‘ 𝑏 ) = 𝑈 ↔ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝒫 𝑈 ) → ( ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ↔ ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) ) |
19 |
18
|
rexbidva |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ↔ ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) ) |
20 |
1 2
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
22 |
21 12
|
islmodfg |
⊢ ( 𝑋 ∈ LMod → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑏 ∈ 𝒫 ( Base ‘ 𝑋 ) ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) ) |
23 |
20 22
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑏 ∈ 𝒫 ( Base ‘ 𝑋 ) ( 𝑏 ∈ Fin ∧ ( ( LSpan ‘ 𝑋 ) ‘ 𝑏 ) = ( Base ‘ 𝑋 ) ) ) ) |
24 |
10 19 23
|
3bitr4rd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ) |