Step |
Hyp |
Ref |
Expression |
1 |
|
islssfg.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
2 |
|
islssfg.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
3 |
|
islssfg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
islssfg2.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
5 |
1 2 3
|
islssfg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ) |
6 |
4 2
|
lssss |
⊢ ( ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 → ( 𝑁 ‘ 𝑏 ) ⊆ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) → ( 𝑁 ‘ 𝑏 ) ⊆ 𝐵 ) |
8 |
|
sstr2 |
⊢ ( 𝑏 ⊆ ( 𝑁 ‘ 𝑏 ) → ( ( 𝑁 ‘ 𝑏 ) ⊆ 𝐵 → 𝑏 ⊆ 𝐵 ) ) |
9 |
7 8
|
mpan9 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) ∧ 𝑏 ⊆ ( 𝑁 ‘ 𝑏 ) ) → 𝑏 ⊆ 𝐵 ) |
10 |
4 3
|
lspssid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑏 ⊆ 𝐵 ) → 𝑏 ⊆ ( 𝑁 ‘ 𝑏 ) ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) ∧ 𝑏 ⊆ 𝐵 ) → 𝑏 ⊆ ( 𝑁 ‘ 𝑏 ) ) |
12 |
9 11
|
impbida |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) → ( 𝑏 ⊆ ( 𝑁 ‘ 𝑏 ) ↔ 𝑏 ⊆ 𝐵 ) ) |
13 |
|
vex |
⊢ 𝑏 ∈ V |
14 |
13
|
elpw |
⊢ ( 𝑏 ∈ 𝒫 ( 𝑁 ‘ 𝑏 ) ↔ 𝑏 ⊆ ( 𝑁 ‘ 𝑏 ) ) |
15 |
13
|
elpw |
⊢ ( 𝑏 ∈ 𝒫 𝐵 ↔ 𝑏 ⊆ 𝐵 ) |
16 |
12 14 15
|
3bitr4g |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) → ( 𝑏 ∈ 𝒫 ( 𝑁 ‘ 𝑏 ) ↔ 𝑏 ∈ 𝒫 𝐵 ) ) |
17 |
|
eleq1 |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ↔ 𝑈 ∈ 𝑆 ) ) |
18 |
17
|
anbi2d |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) ↔ ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ) ) |
19 |
|
pweq |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → 𝒫 ( 𝑁 ‘ 𝑏 ) = 𝒫 𝑈 ) |
20 |
19
|
eleq2d |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( 𝑏 ∈ 𝒫 ( 𝑁 ‘ 𝑏 ) ↔ 𝑏 ∈ 𝒫 𝑈 ) ) |
21 |
20
|
bibi1d |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( ( 𝑏 ∈ 𝒫 ( 𝑁 ‘ 𝑏 ) ↔ 𝑏 ∈ 𝒫 𝐵 ) ↔ ( 𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵 ) ) ) |
22 |
18 21
|
imbi12d |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑏 ) ∈ 𝑆 ) → ( 𝑏 ∈ 𝒫 ( 𝑁 ‘ 𝑏 ) ↔ 𝑏 ∈ 𝒫 𝐵 ) ) ↔ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵 ) ) ) ) |
23 |
16 22
|
mpbii |
⊢ ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵 ) ) ) |
24 |
23
|
com12 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑁 ‘ 𝑏 ) = 𝑈 → ( 𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵 ) ) ) |
25 |
24
|
adantld |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) → ( 𝑏 ∈ 𝒫 𝑈 ↔ 𝑏 ∈ 𝒫 𝐵 ) ) ) |
26 |
25
|
pm5.32rd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ 𝒫 𝑈 ∧ ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ↔ ( 𝑏 ∈ 𝒫 𝐵 ∧ ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ) ) |
27 |
|
elin |
⊢ ( 𝑏 ∈ ( 𝒫 𝐵 ∩ Fin ) ↔ ( 𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin ) ) |
28 |
27
|
anbi1i |
⊢ ( ( 𝑏 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ↔ ( ( 𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin ) ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) |
29 |
|
anass |
⊢ ( ( ( 𝑏 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ Fin ) ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ↔ ( 𝑏 ∈ 𝒫 𝐵 ∧ ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ) |
30 |
28 29
|
bitr2i |
⊢ ( ( 𝑏 ∈ 𝒫 𝐵 ∧ ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ↔ ( 𝑏 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) |
31 |
26 30
|
bitrdi |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑏 ∈ 𝒫 𝑈 ∧ ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ↔ ( 𝑏 ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) ) |
32 |
31
|
rexbidv2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ∃ 𝑏 ∈ 𝒫 𝑈 ( 𝑏 ∈ Fin ∧ ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ↔ ∃ 𝑏 ∈ ( 𝒫 𝐵 ∩ Fin ) ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) |
33 |
5 32
|
bitrd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑏 ∈ ( 𝒫 𝐵 ∩ Fin ) ( 𝑁 ‘ 𝑏 ) = 𝑈 ) ) |