Step |
Hyp |
Ref |
Expression |
1 |
|
islssfgi.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
2 |
|
islssfgi.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
islssfgi.x |
⊢ 𝑋 = ( 𝑊 ↾s ( 𝑁 ‘ 𝐵 ) ) |
4 |
2
|
fvexi |
⊢ 𝑉 ∈ V |
5 |
4
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 𝑉 ↔ 𝐵 ⊆ 𝑉 ) |
6 |
5
|
biimpri |
⊢ ( 𝐵 ⊆ 𝑉 → 𝐵 ∈ 𝒫 𝑉 ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ 𝒫 𝑉 ) |
8 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ Fin ) |
9 |
7 8
|
elind |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ ( 𝒫 𝑉 ∩ Fin ) ) |
10 |
|
eqid |
⊢ ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ 𝐵 ) |
11 |
|
fveqeq2 |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑁 ‘ 𝑎 ) = ( 𝑁 ‘ 𝐵 ) ↔ ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ 𝐵 ) ) ) |
12 |
11
|
rspcev |
⊢ ( ( 𝐵 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ 𝐵 ) ) → ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁 ‘ 𝑎 ) = ( 𝑁 ‘ 𝐵 ) ) |
13 |
9 10 12
|
sylancl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁 ‘ 𝑎 ) = ( 𝑁 ‘ 𝐵 ) ) |
14 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → 𝑊 ∈ LMod ) |
15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
16 |
2 15 1
|
lspcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝐵 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → ( 𝑁 ‘ 𝐵 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
18 |
3 15 1 2
|
islssfg2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝐵 ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁 ‘ 𝑎 ) = ( 𝑁 ‘ 𝐵 ) ) ) |
19 |
14 17 18
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁 ‘ 𝑎 ) = ( 𝑁 ‘ 𝐵 ) ) ) |
20 |
13 19
|
mpbird |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ⊆ 𝑉 ∧ 𝐵 ∈ Fin ) → 𝑋 ∈ LFinGen ) |