Description: The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | islvec.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
Assertion | islvec | ⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | fveq2 | ⊢ ( 𝑓 = 𝑊 → ( Scalar ‘ 𝑓 ) = ( Scalar ‘ 𝑊 ) ) | |
3 | 2 1 | eqtr4di | ⊢ ( 𝑓 = 𝑊 → ( Scalar ‘ 𝑓 ) = 𝐹 ) |
4 | 3 | eleq1d | ⊢ ( 𝑓 = 𝑊 → ( ( Scalar ‘ 𝑓 ) ∈ DivRing ↔ 𝐹 ∈ DivRing ) ) |
5 | df-lvec | ⊢ LVec = { 𝑓 ∈ LMod ∣ ( Scalar ‘ 𝑓 ) ∈ DivRing } | |
6 | 4 5 | elrab2 | ⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing ) ) |