Metamath Proof Explorer


Theorem islvol5

Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses islvol5.b 𝐵 = ( Base ‘ 𝐾 )
islvol5.l = ( le ‘ 𝐾 )
islvol5.j = ( join ‘ 𝐾 )
islvol5.a 𝐴 = ( Atoms ‘ 𝐾 )
islvol5.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion islvol5 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝑉 ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )

Proof

Step Hyp Ref Expression
1 islvol5.b 𝐵 = ( Base ‘ 𝐾 )
2 islvol5.l = ( le ‘ 𝐾 )
3 islvol5.j = ( join ‘ 𝐾 )
4 islvol5.a 𝐴 = ( Atoms ‘ 𝐾 )
5 islvol5.v 𝑉 = ( LVols ‘ 𝐾 )
6 eqid ( LPlanes ‘ 𝐾 ) = ( LPlanes ‘ 𝐾 )
7 1 2 3 4 6 5 islvol3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝑉 ↔ ∃ 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) )
8 df-rex ( ∃ 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) )
9 r19.41v ( ∃ 𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
10 df-3an ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) )
11 10 anbi2i ( ( ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
12 an13 ( ( ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ) )
13 11 12 bitri ( ( ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ) )
14 9 13 bitri ( ∃ 𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ) )
15 14 exbii ( ∃ 𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦 ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ) )
16 ovex ( ( 𝑝 𝑞 ) 𝑟 ) ∈ V
17 an12 ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ↔ ( 𝑦𝐵 ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
18 eleq1 ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( 𝑦𝐵 ↔ ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ) )
19 breq2 ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( 𝑠 𝑦𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) )
20 19 notbid ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ¬ 𝑠 𝑦 ↔ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) )
21 oveq1 ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( 𝑦 𝑠 ) = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) )
22 21 eqeq2d ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( 𝑋 = ( 𝑦 𝑠 ) ↔ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) )
23 20 22 anbi12d ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ↔ ( ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
24 23 anbi2d ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
25 anass ( ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
26 df-3an ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) )
27 26 bicomi ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ↔ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) )
28 27 anbi1i ( ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) )
29 25 28 bitr3i ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) )
30 24 29 bitrdi ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
31 18 30 anbi12d ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ( 𝑦𝐵 ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
32 17 31 syl5bb ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
33 32 rexbidv ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ↔ ∃ 𝑠𝐴 ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
34 r19.42v ( ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ↔ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
35 r19.42v ( ∃ 𝑠𝐴 ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
36 33 34 35 3bitr3g ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) → ( ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
37 16 36 ceqsexv ( ∃ 𝑦 ( 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ∧ ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ) ∧ ∃ 𝑠𝐴 ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
38 15 37 bitri ( ∃ 𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
39 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
40 39 ad3antrrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → 𝐾 ∈ Lat )
41 simplll ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → 𝐾 ∈ HL )
42 simplrl ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → 𝑝𝐴 )
43 simplrr ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → 𝑞𝐴 )
44 1 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴 ) → ( 𝑝 𝑞 ) ∈ 𝐵 )
45 41 42 43 44 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → ( 𝑝 𝑞 ) ∈ 𝐵 )
46 1 4 atbase ( 𝑟𝐴𝑟𝐵 )
47 46 adantl ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → 𝑟𝐵 )
48 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑝 𝑞 ) ∈ 𝐵𝑟𝐵 ) → ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 )
49 40 45 47 48 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 )
50 49 biantrurd ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → ( ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ↔ ( ( ( 𝑝 𝑞 ) 𝑟 ) ∈ 𝐵 ∧ ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
51 38 50 bitr4id ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) ∧ 𝑟𝐴 ) → ( ∃ 𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
52 51 rexbidva ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ) → ( ∃ 𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
53 52 2rexbidva ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
54 rexcom4 ( ∃ 𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
55 54 rexbii ( ∃ 𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑞𝐴𝑦𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
56 rexcom4 ( ∃ 𝑞𝐴𝑦𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
57 55 56 bitri ( ∃ 𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
58 57 rexbii ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑝𝐴𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
59 rexcom4 ( ∃ 𝑝𝐴𝑦𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
60 58 59 bitri ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑦𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
61 53 60 bitr3di ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ↔ ∃ 𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )
62 rexcom ( ∃ 𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
63 62 rexbii ( ∃ 𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑞𝐴𝑠𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
64 rexcom ( ∃ 𝑞𝐴𝑠𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
65 63 64 bitri ( ∃ 𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
66 65 rexbii ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑝𝐴𝑠𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
67 rexcom ( ∃ 𝑝𝐴𝑠𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
68 66 67 bitri ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
69 1 2 3 4 6 islpln2 ( 𝐾 ∈ HL → ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )
70 69 adantr ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )
71 70 anbi1d ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ( ( 𝑦𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
72 r19.42v ( ∃ 𝑝𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
73 r19.42v ( ∃ 𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
74 73 rexbii ( ∃ 𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑞𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
75 r19.42v ( ∃ 𝑞𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
76 74 75 bitri ( ∃ 𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
77 76 rexbii ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑝𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
78 an32 ( ( ( 𝑦𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
79 72 77 78 3bitr4ri ( ( ( 𝑦𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) )
80 71 79 bitrdi ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )
81 80 rexbidv ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑠𝐴 ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ∃ 𝑠𝐴𝑝𝐴𝑞𝐴𝑟𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ) )
82 68 81 bitr4id ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑠𝐴 ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
83 r19.42v ( ∃ 𝑠𝐴 ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ↔ ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) )
84 82 83 bitrdi ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
85 84 exbidv ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑦𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑦𝐵 ∧ ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ∧ ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ 𝑦 = ( ( 𝑝 𝑞 ) 𝑟 ) ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
86 61 85 bitrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∧ ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ) ) )
87 8 86 bitr4id ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( ∃ 𝑦 ∈ ( LPlanes ‘ 𝐾 ) ∃ 𝑠𝐴 ( ¬ 𝑠 𝑦𝑋 = ( 𝑦 𝑠 ) ) ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
88 7 87 bitrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝑉 ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )