Step |
Hyp |
Ref |
Expression |
1 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
2 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → dom 𝐹 = 𝐴 ) |
3 |
2
|
eleq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
4 |
1 3
|
syl5ib |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn → 𝐴 ∈ dom vol ) ) |
5 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
6 |
|
ioorebas |
⊢ ( -∞ (,) +∞ ) ∈ ran (,) |
7 |
5 6
|
eqeltrri |
⊢ ℝ ∈ ran (,) |
8 |
|
imaeq2 |
⊢ ( 𝑥 = ℝ → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ℝ ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = ℝ → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
10 |
9
|
rspcv |
⊢ ( ℝ ∈ ran (,) → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) ) |
11 |
7 10
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
12 |
|
fimacnv |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = 𝐴 ) |
13 |
12
|
eleq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ↔ 𝐴 ∈ dom vol ) ) |
14 |
11 13
|
syl5ib |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol → 𝐴 ∈ dom vol ) ) |
15 |
|
ismbf1 |
⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
16 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
18 |
17
|
rered |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
19 |
18
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
20 |
17
|
recnd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
21 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 : 𝐴 ⟶ ℝ ) |
22 |
21
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
23 |
|
ref |
⊢ ℜ : ℂ ⟶ ℝ |
24 |
23
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℜ : ℂ ⟶ ℝ ) |
25 |
24
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℜ = ( 𝑦 ∈ ℂ ↦ ( ℜ ‘ 𝑦 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ℜ ‘ 𝑦 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
27 |
20 22 25 26
|
fmptco |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
19 27 22
|
3eqtr4rd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 = ( ℜ ∘ 𝐹 ) ) |
29 |
28
|
cnveqd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ◡ 𝐹 = ◡ ( ℜ ∘ 𝐹 ) ) |
30 |
29
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ) |
31 |
30
|
eleq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) |
32 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
33 |
32
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℑ : ℂ ⟶ ℝ ) |
34 |
33
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ℑ = ( 𝑦 ∈ ℂ ↦ ( ℑ ‘ 𝑦 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
36 |
20 22 34 35
|
fmptco |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
37 |
17
|
reim0d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
38 |
37
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
39 |
36 38
|
eqtrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
40 |
|
fconstmpt |
⊢ ( 𝐴 × { 0 } ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) |
41 |
39 40
|
eqtr4di |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ 𝐹 ) = ( 𝐴 × { 0 } ) ) |
42 |
41
|
cnveqd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ◡ ( ℑ ∘ 𝐹 ) = ◡ ( 𝐴 × { 0 } ) ) |
43 |
42
|
imaeq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( 𝐴 × { 0 } ) “ 𝑥 ) ) |
44 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐴 ∈ dom vol ) |
45 |
|
0re |
⊢ 0 ∈ ℝ |
46 |
|
mbfconstlem |
⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℝ ) → ( ◡ ( 𝐴 × { 0 } ) “ 𝑥 ) ∈ dom vol ) |
47 |
44 45 46
|
sylancl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ ( 𝐴 × { 0 } ) “ 𝑥 ) ∈ dom vol ) |
48 |
43 47
|
eqeltrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
49 |
48
|
biantrud |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
50 |
31 49
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
51 |
50
|
ralbidv |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) |
52 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
53 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
54 |
52 53
|
mpan2 |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
55 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
56 |
|
cnex |
⊢ ℂ ∈ V |
57 |
|
reex |
⊢ ℝ ∈ V |
58 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
59 |
56 57 58
|
mpanl12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
60 |
54 55 59
|
syl2an |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
61 |
60
|
biantrurd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) ) |
62 |
51 61
|
bitrd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) ) |
63 |
15 62
|
bitr4id |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
64 |
63
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐴 ∈ dom vol → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) ) |
65 |
4 14 64
|
pm5.21ndd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |